
Maximizing Cloud Advantages through
Cloud-Aware Applications

IT@Intel White Paper
Intel IT
IT Best Practices
Cloud-Aware Applications
May 2013

Intel IT is helping Intel developers
design cloud-aware applications
that maximize cloud advantages
such as self-service provisioning,
elasticity, run-anywhere design,

multi-tenancy, and design for failure.

Catherine Spence
Enterprise Architect, Intel IT

Munir Ghamrawi
Cloud Automation Engineer, Intel IT

Ravi Giri
Staff Engineer, Intel IT

Winson Chan
Cloud Automation Engineer, Intel IT

Esteban Gutierrez
Senior Information Security Technologist,

Intel IT

Das Kamhout
Principal Engineer/Cloud Lead, Intel IT

Executive Overview

As Intel IT continues widespread adoption of cloud computing, Intel software

development is undergoing a major shift. Intel architects and developers are

learning to design cloud-aware applications that maximize cloud advantages, such

as self-service provisioning, elasticity, run-anywhere design, multi-tenancy, and

design for failure.

Giving developers the tools they need to
build cloud-aware applications benefits
Intel several ways.

• Faster time to market for enterprise
applications

• Rapid adoption of cutting-edge
technologies

• Cost and resource efficiencies through
elastic, on-demand cloud infrastructure

• Greater flexibility in hosting applications
using a hybrid cloud model

• New innovation opportunities through
easier data integration

• Easier implementation of new mobile
computing devices and usage models

Designed from the ground up for cloud
deployment, cloud-aware applications
require a different way of thinking. To
speed implementation, Intel IT is applying
key learnings from grid computing, as well

as adopting best cloud practices such as
consumable web services and high-availability
designs. Our strategy is to architect
enterprise applications with a cloud back-
end and multiplatform front-end, actively
exposing and consuming web services
offering built-in security. Through one-
day code-a-thons and other events, we’re
training developers in this new paradigm
and validating our strategic agility target of
innovative idea to production in one day.

By increasing interoperability between private
and public clouds, the design of cloud-aware
applications are an important step in our
progression toward a federated, interoperable,
and open cloud as our standard way of
providing services. We believe that perfecting
cloud-aware application development is a vital
step to maximizing hybrid cloud advantages
and bolstering the reliability, security, and
agility of our enterprise applications.

2 www.intel.com/IT

IT@Intel White Paper Maximizing Cloud Advantages through Cloud-Aware Applications

Contents

Executive Overview ... 1

Background ... 2

Business Challenge ... 3

Solution .. 4

Applying Key Learnings
from Grid Computing ... 4

Developing Consumable
Web Services .. 5

Designing for
High Availability .. 7

Security .. .10

Results .. .11

Conclusion11

Related Information11

Acronyms11

IT@InTEl
The IT@Intel program connects IT
professionals around the world with their
peers inside our organization – sharing
lessons learned, methods and strategies.
Our goal is simple: Share Intel IT best
practices that create business value and
make IT a competitive advantage. Visit
us today at www.intel.com/IT or contact
your local Intel representative if you’d
like to learn more.

BACkgrOund
Intel IT began a transition to cloud
computing in 2010 and continues
making substantial progress toward
our goal of a hybrid cloud hosting
model. These efforts are enabling us to
achieve high levels of agility, scalability,
and efficiency. While our initial focus
centered on optimizing data center
and cloud infrastructure, software
applications play an essential role in
how, when, and where IT services are
consumed. We recognize that to obtain
even greater business benefits, we
need to encourage the development of
cloud-aware applications designed from
the ground up to take full advantage of
the cloud.

To help understand the adoption of cloud
computing in the enterprise, Intel uses the
Cloud Maturity Model (see Figure 1) provided
by the Open Data Center Alliance (ODCA).
This coalition includes more than 300 leading
businesses that together represent billions
of dollars in annual IT investment, cloud
research, and projects.

The Cloud Maturity Model provides an end-
to-end visualization of how cloud use in the
enterprise will evolve over time. As cloud
implementation matures, it becomes more
sophisticated, comprehensive, and optimized.
Based on ODCA industry experience, many
large enterprises are progressing along the
same overall trajectory but at different rates
of adoption.

The time ranges indicated for each stage
in Figure 1 are specifically for Intel IT. For
example, we were at version 1.0 in the 2010-
2011 time frame. By 2015, we are projecting
to be at version 3.0, offering a federated,
interoperable, and open cloud spanning all
cloud service models—software as a service
(SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS). We will be
able to federate user identities among private
and public clouds. Our workloads will be able to
interoperate across clouds easily with minimal

switching costs. And we are already building
our next-generation enterprise private cloud
utilizing open solutions to facilitate a fast
introduction of capabilities based on the open
source communities cadence. With a federated,
interoperable, and open cloud, Intel IT will have
the flexibility to decide where to rapidly source
cloud services based on user demand, cost,
location, and regulatory requirements.

To build on our progress and to unlock
the full value of the cloud, Intel IT is now
training developers to design cloud-aware
applications that take advantage of our
PaaS and IaaS offerings. Cloud-aware
applications improve the ability to consume
cloud services, taking better advantage
of infrastructure that can grow and shrink
according to demand. These applications
also seamlessly move on and off premises,
providing the ability to optimize location,
cost, capabilities, and risk. Compared to
traditional applications, cloud-aware
applications can be more resilient and
can enable the delivery of higher levels of
services, such as a faster mean-time-to-
recovery (MTTR).

Cloud-aware application development
techniques build on best practices of traditional
application development and can be hosted
more quickly in the enterprise private cloud
through self-service tools and automation. Intel
IT is at the point where developers can choose
either of the following:

• PaaS, which provides a pre-provisioned
environment with operating system,
abstracted middleware, and infrastructure
that allows developers to rapidly deploy
applications without having to provision
servers. Our PaaS implementation enables
rapid application deployment through
self-service, on-demand tools, resources,
automation, and a hosted platform runtime
container in the enterprise private cloud.
PaaS facilitates the creation of cloud-
aware applications through the use of
templates, resource sharing, reusable web
services, and large-scale multi-tenancy.

http://www.intel.com/IT
http://www.intel.com/IT

www.intel.com/IT 3

 Maximizing Cloud Advantages through Cloud-Aware Applications IT@Intel White Paper

• IaaS, which supplies developers more
control when needed over the entire
application stack or when the application
requires a level of isolation from other
applications on the same application
stack. In addition, our IaaS implementation
exposes infrastructure services as APIs
and provides a user interface that makes it
easy for developers to consume compute,
network, and storage. Developers choose
IaaS for more complex applications or for
applications with requirements for very
high levels of availability.

As developers start to regularly develop
cloud-aware applications, Intel will be able
to more rapidly and readily adopt and apply
cutting-edge solutions and achieve faster
time to market. Instead of waiting for physical
infrastructure or custom, internally developed
services, developers will be able to consume
services as soon as they need them.

BusInEss ChAllEngE
Organizations face several challenges
in making the transition to cloud-
aware application development.
having already invested considerably
in developing and maintaining legacy
applications, organizations may be
resistant to change. Cloud-aware
application development also requires a
new way of thinking—developers must
be retrained to think in all ways cloud.

Many organizations have already completed
the first stage in the Cloud Maturity Model,
adopting virtualization to consolidate workloads
previously hosted on dedicated physical servers.
This transition involves little or no change in
the applications themselves, which are still
written for a physical environment and have
traditional expectations and dependencies.

• High availability derived from infrastructure
designed at a cost for high resilience through
a low mean-time-between-failure (MTBF).

• Isolation achieved through “owning” a
specific server—or virtual machine (VM)—
and database. These types of dedicated
resources significantly minimize potential
contention issues or conflict with other
applications, particularly in virtualized servers.

• Security assumed from placement of
applications behind the firewall.

• A stationary location accompanied by a set
of IP addresses and server names that do
not change.

Cloud-aware applications change these
expectations to take best advantage of what
makes the cloud so fluid and elastic. Consider
how much different the thinking is for cloud-
aware applications.

• High availability achieved by software
systems designed for fast MTTR instead
of low MTBF.

• Resource sharing among applications
instead of isolation.

END USER

APPLICATION
DEVELOPER

APPLICATION
OWNER

IT OPERATIONS

Apps – Applications; Ent – Enterprise; IaaS – Infrastructure as a Service; ODCA – Open Data Center Alliance; PaaS – Platform as a Service; SaaS – Software as a Service

ODCA Framework
Version 1.0
2010-2012

Cloud and IaaS services
are introduced

Compute, Storage,
and Network

Simple Compute
IaaS

ODCA Framework
Version 1.5
2011-2013

Simple SaaS, cloud-aware
apps, and complex compute

IaaS are introduced and
enterprise apps reduced

Cloud-Aware Apps

Simple SaaSSimple SaaS

ODCA Framework
Version 2.0
2012-2014

Data sharing between
clouds and applications form;

increasing use of cloud-aware apps
and creating a private PaaS and IaaS

Private IaaS

Private PaaS

Cloud-Aware Apps

Complex SaaS

ODCA Framework
Version 2.5
2013-2015

Increased data sharing
between hybrid applications

creation of hybrid SaaS,
 PaaS, and Iaas

Hybrid IaaS

Hybrid PaaS

Hybrid SaaS

ODCA Framework
Version 3.0
2014-2016

Intel IT Cloud goal

Federated,
Interoperable,

and Open CloudComplex Compute IaaS

Cloud-Aware Apps
Enterprise

Traditional Apps

Simple Compute IaaS

Compute, Storage,
and Network

Ent Traditional Apps Ent Traditional Apps

Enterprise
Traditional Apps

Figure 1. Using the Open Data Center Alliance Cloud Maturity Model is helping Intel IT progress to a federated, interoperable, and open cloud—the
ultimate goal recommended by industry organizations.

http://www.intel.com/IT

4 www.intel.com/IT

IT@Intel White Paper Maximizing Cloud Advantages through Cloud-Aware Applications

• Security derived not from a firewall but
from the combination of a secure cloud
service foundation, security features built
into the application, and enterprise security
capabilities delivered as consumable services.

• A run-anywhere design where, instead of
a stationary location, individual workloads
move in and among private and public
clouds and across the world based on
demand and policy.

Cloud-aware applications offer additional
benefits, including the following:

• A design that supports multiple tenants
(groups of users) and common instances of
applications, platforms, and infrastructure.

• Visibility and control limits that keep
individual applications from having full
control over the infrastructure and
operating system to make changes to
abstracted configuration settings.

• Self-service capabilities that make all
cloud aspects available to the user
without creating IT service requests.

• Elasticity features that allow applications
to grow and shrink on demand to optimize
pay-for-what-you-use cloud pricing models.

• Evolvable characteristics in which both
software and hardware components may
update underneath an application.

• A composable design in which
applications are divided into discrete
services for use alone or for fast reuse
in combination with other services to
create more complex applications.

For most developers, cloud-aware
applications are a major paradigm shift.
Making this shift even more important to
embrace is the proliferation of different
mobile and bring-your-own (BYO) devices
throughout the enterprise. It is increasingly
necessary to decouple applications from
clients to avoid the time and expense of
dealing separately with each form factor,
browser, and operating system. The cloud
provides a perfect back-end that can scale to

suit the growing demands from the explosion
of devices, as well as allow software
developers to build applications and services
that enrich the lives of IT consumers with
always-on, anytime, anywhere access.

sOluTIOn
To accelerate the organization’s ability to
develop cloud-aware applications, Intel
IT focused on three key areas: applying
key learnings from grid computing,
developing consumable web services
for use as software components,
and designing for high availability.
Through these efforts we have been
able to decouple applications from
clients, enable easy reuse of software
components, provide security at every
layer, and design for failure.

Applying key learnings
from grid Computing
The concept of grid computing predates
that of cloud computing and provides
a series of best practices for designing
cloud-aware applications. In grid computing,
individual computers in multiple locations are
connected through a dedicated, high-speed
network to share memory, storage, and other
resources to work on a common goal. These
computing resources are coordinated by a
resource or workload scheduler that uses
advanced algorithms to decide what kind of
computing should be done on which compute
node and at which location. This distributed
computation is similar to many cloud solutions
that have the elements of geographical
distribution, workload scheduling on VMs, and
a goal of maintaining high utilization.

Since 2005 Intel has had a global grid
computing capability that enables jobs—
discrete computing workloads—to run on
up to tens of thousands of compute nodes
anywhere in the world. Many characteristics

of grid computing apply within a cloud
computing environment.

• Run anywhere. Intel’s global grid for
silicon design computing spans more than
30 geographic locations. Each project
requires some preliminary work to ensure
availability of required data, metadata, and
configurations.

• Elastic scaling. Elastic scaling has enabled
the use of idle resources around the world
to meet millions of hours of unforecasted
computing need or to reduce capital
expenditure for forecasted needs by using
idle capacity. In the last 12 months, in
just the top three data center locations
at any given point in time, this capability
enabled an average of >87,000 workloads
(normalized to adjust for server platform
throughput improvement) to run.

• Multi-tenant resource sharing. Our grid
environment focuses on maintaining high
utilization, a state which is achieved by
allowing applications across projects and
business units to share a common pool of
computing resources.

• Design for failure or stateless computing.
In stateless computing, software does not
track configuration settings, transaction
information, or any other data for the next
session. This approach makes it perfect for
grid computing where, from an application
point of view, every compute node in the
grid is exactly the same as another. Failure
of an individual compute node or nodes
simply involves rescheduling a particular
application instance on another compute
node and is completely transparent to
the end user.

Moving from a traditional localized cluster to
a global grid involves many changes to the
methods adopted by application developers.
There can be no dependencies on local
environments, such as references to specific
machines or IP addresses to data paths.

Intel IT created a framework to allow developers
to migrate existing applications and tools to

http://www.intel.com/IT

www.intel.com/IT 5

 Maximizing Cloud Advantages through Cloud-Aware Applications IT@Intel White Paper

run in a global grid environment. An abstraction
layer, or virtual pool, allows the resource
scheduler to coordinate resources across
many locations. A global namespace
ensures data paths are always consistent
irrespective of the geographic location in
which the application is running. And a global
configuration management system ensures
that the compute nodes that the resource
scheduler chooses to run a given application are
consistent and optimized for that application.

sImIlArITIEs And dIffErEnCEs
BETWEEn grId And ClOud COmPuTIng

As a precursor to cloud computing, grid
computing provides some guidance in
developing cloud-aware applications. Grid
computing, like cloud computing, is event-driven
and relies heavily on queuing. The need to
disassociate the application from dependencies
on a specific system, environment, or data
center, involves common techniques for both.
Other common characteristics include a
scale-out versus a scale-up environment. In
grid computing individual compute nodes are
relatively small, but there are large numbers of
them. In cloud computing, compute nodes may
be both large and numerous.

A key difference between grid and cloud
computing is elasticity. Cloud services can grow
and shrink dynamically to meet demand, whereas
grids are static environments. In addition,
the cloud provides the ability to measure
consumption and resource usage, as well as
provides self-service for on-demand resources.

For developers, most grid computing
environments by design offer a homogeneous
base of common operating systems, software
libraries, and more, which simplify application
development. A cloud computing environment,
particularly a hybrid cloud, may present a mix of
environments. Another key difference is that
almost all applications using grid computing run in
batch mode and thus involve no user interaction.
In contrast, a significant number of applications
in cloud computing involve user interaction.

AdOPTIng PrACTICEs frOm
ClOud COmPuTIng

While Intel IT still runs a large design grid
today, we expect to see an evolution to the
cloud. Moving the grid to the cloud will give
us even better resource utilization as we
consolidate environments, enabling us to
direct workloads to specific processors that
support high-performance computing.

Intel IT has embarked on a cloud design
program to transform the grid environment
to incorporate several cloud computing
elements.

• Self-service. The ability to specify
required configurations, metadata, and
avoid other preliminary work involved
in running applications globally offers a
significant benefit to grid computing.

• Visibility and control. We are investing
in capabilities that allow end users
complete visibility to the state of the
environment and the ability to manage
resources either through user interfaces
or standardized web service APIs.

• Composable. This key cloud
characteristic is expected to bring
significant benefits to grid computing.
For example, some applications that
run in grid environments need network
awareness to ensure dependent jobs land
on compute nodes that are nearby. In the
future, we expect to go from network
awareness to network control where
the application can define what kind of
network configuration is required for
optimal execution.

While Intel IT’s grid computing experiences
significantly influence our cloud journey,
and in return our cloud experiences
provide new insights to our grid computing
efforts, we foresee a future when these
environments and usage patterns are
supported by a single federated, open,
and hybrid cloud.

developing Consumable
Web services
A web service is a software function
provided at a network address over the
web or the cloud. As Intel IT continues
implementing an open cloud, we are driving
the creation of consumable web services
at every layer. Offering consumable web
services is important because it is the
only way we can massively automate the
cloud and enable self-service. Likewise,
our software application developers need
to adopt the view that in the future a
software developer will want to mash-up
their software application with others
to create new business processes and
automation at scale.

Intel’s preference for web services uses a
representational state transfer (REST) model.
RESTful APIs rely on HTTP and do not require
XML-based web service protocols, such as
SOAP or WSDL, to support their lightweight
interfaces. Other HTTP advantages include
the ability to be called from any platform,
efficiently cache requests, and easily scale
out. The RESTful model enables developers
to quickly reuse application capabilities
through standardized methods such as post,
get, put, and delete. These standardized
methods reduce the learning curve
associated with consuming a new software
service and shield the developer from the
underlying technology implementations.

Using open source web services for more
utilitarian functions helps us accelerate
development and save coding time for
custom tasks, such as connecting to the
back-end. More and more web applications
have published APIs that enable software
developers to easily integrate data and
functions instead of building them personally.
Easy-to-use mashup composition tools are
also emerging. In addition, we encourage
Intel developers to expose their applications
through web services so other developers
can combine multiple applications into

http://www.intel.com/IT

6 www.intel.com/IT

IT@Intel White Paper Maximizing Cloud Advantages through Cloud-Aware Applications

Intel IT Consumable Web Services Guidelines

All software products and infrastructure services should include
a consumable API (web services) to automate and integrate the
capabilities within more complex business workflows. This applies
to the following types of software:

• Software acquired by Intel and hosted at Intel to construct an
enterprise private cloud

• Software hosted by a cloud provider and consumed by Intel in
either a standalone or hybrid cloud model

• Software services internally developed by Intel

• Infrastructure services running at Intel or consumed by Intel,
including all hardware solutions that IT developers consume,
regardless of their location or their authorization to use it

We expect all web services to be written in a manner consistent with
good API design and cloud computing practices.

• Functionality provided through a command line interface (CLI) or
graphical user interface (GUI) must also be available through an API.
Furthermore, CLIs and GUIs are implemented as wrappers for public
APIs instead of relying on private APIs or other mechanisms not
available to application developers.

• APIs are discoverable at runtime with clear service descriptions,
versioning, and published service-level agreements. Ideally, these
are exposed through a service catalog.

• Programming examples are made available and in commonly used
languages. Developers are encouraged to provide client libraries
(bindings, proxies) for various commonly used languages to
accelerate adoption.

• We encourage use of the representational state transfer (REST)-
based architecture model, including conventional uniform resource
identifier (URI) design, and standard HTTP methods (Post, Get,
Put, Delete) and security (encrypted Secure Sockets Layer, Open
Authorization). APIs are logically layered to provide useful abstraction
from the core capabilities of the software and simplify their usage.

• APIs support role-based access with proper authentication,
authorization, and accounting controls in place. Resources being
managed by an API are further restricted to allow access to only
appropriate owners and approved delegates. Operations are logged
such that the system can be reviewed to identify who accessed
what and when.

• Developers can select from a list of available output data types,
such as JavaScript* Object Notation (JSON), XML, YAML, and HTML.
We prefer the JSON format.

• APIs do not limit potential cloud users by requiring special licenses
or through cost limitations on the use of the interface.

• There is a loose association between the client application and
web API where calls do not depend on the prior API call (stateless
compute), all state data is returned to the client, and all dynamic
memory is released.

• Web services provide mechanisms to support asynchronous call
back, such as publishing results to the message queue where the
consumer is listening, email notification, or other forms of call back,
for long-running tasks. The task is identified by a globally unique
identifier. Consumers can query for status or progress of the task
using this identifier.

• All application data, including cache and log data, are stored
outside individual compute instances utilized by the cloud
software. If there is a failure in the back-end, components
resume transaction processing from any compute instance
without losing any transactions.

• In general, data processing within the web service back-end is
designed for eventual consistency rather than relying on real-time,
synchronous mirroring to keep each compute instance in lock step.
The exception is niche areas where fixed resources are involved
and constant consistency is required.

• Web services are compartmentalized and capable of rapid elasticity
at a massive scale. Instead of failing requests when capacity is low,
we use a rate-limiting technique to throttle requests initially. When
resources are completely consumed, an error is returned. We design
our web services with denial of service attacks in mind.

• Web services are designed to be accessed through meaningful and
easily remembered vanity names in combination with global load
balancers with appropriate routing policies, such as proximity, round
robin, and others. We prefer an internal root tree for APIs.

• Running web services do not rely on static TCP/IP addresses;
instead they comprehend domain names.

• Web services are designed for failure, such as anticipating
infrastructure failures and maintaining uptime across multiple
availability zones, preferably through an active/active model.

• Response status codes conform to standard HTTP format,
as maintained by the Internet Assigned Numbers Authority
(IANA). The body of the error response message should include
additional human-readable diagnostic information to help debug
applications.

• Maintenance and ongoing development of the APIs are nonintrusive
(backward compatible), enabling sustained operations without
impact or requirement for downtime. Incompatible changes are
addressed through API versioning so that the old and new versions
are available simultaneously.

http://www.intel.com/IT

www.intel.com/IT 7

 Maximizing Cloud Advantages through Cloud-Aware Applications IT@Intel White Paper

mashups spawning new applications. This
practice is particularly valuable for application
development throughout the business
process chain. Open APIs and data sources
enable fast, easy integration to produce
enriched solutions for new and evolving
business conditions.

Some of our latest APIs enable developers
to create cloud-based applications that can
detect local client device capabilities. Such
client awareness enables more effective
application deployment across a wide
range of devices. For instance, a network
bandwidth API can detect wireless signal
strength to enable an application to adjust
content quality or other parameters. A
processor performance API can detect the
CPU type to enable running content or
applications that can be optimally executed
and displayed on the device. A third API
monitors battery life to provide periodic
power-level updates that an application can
use to inform a user to conclude a process
or take action before a power interruption.

designing for
high Availability
Although the goal for a cloud infrastructure
might be zero failure, in reality components
fail, data centers shut down, services
become unavailable, and latencies increase
intermittently. Consequently, we design our
cloud-aware applications to function even
when outages occur. Designing applications
to survive failures in a distributed environment
affects decisions throughout the architecture,
but are especially important to consider in
relation to the user experience. We design our
applications so they gracefully degrade and
recover when services are unavailable. Intel IT
encourages Intel developers to use a variety
of methodologies to architect cloud-aware
applications for zero downtime.

Cloud-aware application design assumes that
all components including static contents and

their data containers are available at all times
and in reasonable proximity to the end user
based on performance requirements. When a
component fails, the process of pointing the
application to an alternative synchronized
component should be completely seamless
with minimal impact to the end user. That
requires the application to distribute data
in multiple locations, providing complete
redundancy for every component and
automating the failover process.

The techniques we use for high-availability
design include the following:

• Automated and repeatable deployment
for application resources such as
infrastructure, security, code or binary,
application configuration, and data.

• Additional workloads that can be easily
distributed through adding new compute
nodes. This requires monitoring and logic
to determine when to automatically scale
out. In addition, the scaling function needs
to perform rapidly to address sudden
increases in demand. When demand
decreases, we need to rapidly scale back
as well.

• Resilience through monitoring and self-
healing, such as the ability to remove bad
nodes from a load balancing pool and deploy
a new node to replace the bad one. The
goal is to minimize downtime experienced
by the end users of the application.

dEsIgn fOr fAIlurE

Since clouds change over time with capacity
addition and removal, developers must
assume parts of the cloud may occasionally
fail and must actively test applications for
their ability to handle and respond to such
failures. We encourage Intel developers to
test resiliency by randomly shutting down
parts of their environment.

To design for failure, we encourage
developers to think about failure from

the application’s viewpoint. This means
focusing on the internal architecture of
the application, as well as ensuring proper
implementation across multiple distributed
locations and availability zones. When
an application is designed with multiple
modules that can call each other through
an API, any module failure can recover
independently in less time than if the
application is just one big component.
Componentizing can be accomplished
through application sharding, data sharding,
multiple deployments (instances) of the
same components, and utilizing multiple
regions for the same deployment. Another
technique is to consider how an application
can provide a degraded but available
level of capability when certain parts
of the application are experiencing an
outage. For example, if a recommendation
engine is experiencing an outage, the
end user should still be able to perform
transactions in the system, only without
the recommendations.

usE sTATElEss COmPuTIng

In traditional applications, state is usually
stored in memory. However, state stored in
memory can be lost if there is an outage. It
is also difficult to share state among multiple
application instances. Therefore, for cloud
applications we find that stateless applications
and protocols work best for our needs.

Stateless protocols such as IP and HTTP treat
each request as an independent transaction
that is unrelated to any previous request. The
communication consists of independent pairs
of requests and responses. Such stateless
protocols do not require the infrastructure to
retain session information or status about
each communications partner for the duration
of multiple requests.

Stateless computing has certain implications
in coding for the cloud. For example, if an
outage occurs, instances of an application

http://www.intel.com/IT

8 www.intel.com/IT

IT@Intel White Paper Maximizing Cloud Advantages through Cloud-Aware Applications

could go away. Developers also need to
understand that the internal state of an
application is not going to be available as
expansions are happening or as application
components fail. Thus, application state
should be stored external from the compute
container in a database, object store, or
message queue.

The goal is to make applications as
stateless as possible. For instance, when
communicating with services or subroutines
within the application, developers should
make sure the necessary data is passed to
the application or enable the application to
gather that information from the queue.

Most web applications do not store any
information on front-end servers because,
along with the back-end data layer, the front
end usually needs to scale. To successfully
implement stateless computing, developers
need to change how they view their
hardware needs, how they store and access
information, and how they scale.

mAkE APPlICATIOns EvEnT drIvEn

An event-driven application is a computer
program written to respond to actions
generated by the user or system. For cloud-
aware applications, an important strategy
for designing for high availability is to code
applications to read requests from a queue
instead of synchronous calls. This allows
multiple application instances to process
requests. Instead of tightly integrated
synchronous calls that each demand a
precisely timed response, requests for work
come off a queue, enabling adding multiple
applications instances to process work that
much faster. This can substantially improve
application performance, depending on the
additional instances added. What’s more, if an
instance is lost, the damage is minimal. The
most that is lost is a single transaction. The
remaining information in the queue continues
to be distributed among the different active
instances.

sCAlE OuT, nOT uP

Scaling up always has a break point. If
developers scale up, a point is reached where
an application runs out of resources. Scaling
up databases, for example, limits application
performance to the database’s server
performance. If an application goes viral
and attracts users in the millions, it will hit a
break point. Scaling out (horizontally) ensures
nearly infinite scalability. As long application
bottlenecks are anticipated and dealt with in
application design, applications designed to
scale out can readily take advantage of the
cloud’s massive scalability and elasticity.

We scale database servers out through
replicas of the primary database and through
partitioning data to multiple database
servers. Historically with traditional database
servers, it was difficult to partition the data
without extensive changes to applications.
With current database technologies, we can
implement shards that split data to their own
database server with little or no changes to
applications. This enables database servers
to be partitioned and easily managed for
backup, restore, migration, and maintenance.
It is much easier to perform data replication
or a backup on a 1 terabyte (TB) live
database split into four different database
servers of 250 gigabytes each than to
experience the input/output performance
degradation involved in backing up one large
1 TB database.

The complete separation of compute and
persistence provides the best deployment and
scaling flexibility. We prefer web services for all
data storage, including log files and debugging
streams. This shields the application from
underlying changes in storage technology and
decreases deployment overhead. With nothing
stored locally on the compute instance that is
running the cloud application, the application
can run in an internal cloud, public cloud, or
in both locations.

dEsIgn fOr EvEnTuAl COnsIsTEnCy

For data to be highly available, it must be
replicated between sites and synchronized.
However, it is important to balance this
requirement against cost and performance.
This is particularly true in eventual
consistency, the condition in the cloud where
a change in the database or application may
not be registered for a few milliseconds.
Since multiple application instances could
live globally over multiple availability zones
and include geographically distant zones, a
cloud developer must consider how to handle
inconsistencies from different instances
drawing from the database.

One method is to shard data to manage
scaling needs locally within the site and
remotely to other sites. Each shard is a
portion of a database consisting of one or
more rows. Using what we call GEO shards,
we write data for a specific geographic region
to a specific designated site. Within each GEO
shard, we create local shards to enable scaling
within the site. To ensure high availability,
we use replication to mirror each shard to
another site.

For example, when an application is globally
distributed using an active/active design
pattern (described below), users accessing
that application use an instance that is
closest to them geographically. The data that
is associated with that application is sharded
across databases hosted at various sites. To
enable this, a horizontal partition is created
across database instances of the same table,
resulting in multiple sites with different data.
Eventually the data becomes consistent over
time as updates are synchronized among the
database instances.

In eventual consistency, an application needs
to be able to handle latency in data with
multiple sites. When the application is in the
process of selecting data that is still in transit,
it needs a retry method to accommodate the
few milliseconds of latency.

http://www.intel.com/IT

www.intel.com/IT 9

 Maximizing Cloud Advantages through Cloud-Aware Applications IT@Intel White Paper

Applications also need to manage uniqueness
differently in eventual consistency. Since data
is in multiple places, the application needs to
be able to recognize uniqueness violations
and adjust accordingly. If an application is
trying to insert specific data that just got
inserted in another site, the application
needs to query the data to see if it exists in
these other locations and adjust the update
operation accordingly.

Eventual consistency isn’t recommended
for all applications, particularly those that
require exact information at all times, such as
an inventory system. For many applications
though, eventual consistency works well.
For example, the data involved in a global
conference room scheduling application
for a site in a particular geographic region
would not often be accessed by people in a
different region.

In some cases, developers will have to work
with conflict resolution scenarios. Consider
the conference room scheduling application
example again. If someone traveling from one

region to another location tries to reserve
a conference room at the destination, a
mechanism must be in place to handle the
scenario where someone at the destination
facility is simultaneously attempting to reserve
the same conference room. Otherwise, both
parties could potentially receive confirmation
messages. This issue could be resolved
with a time delay for confirmation or Paxos
consensus protocols employing a number of
message delays up to an agreed value.

ACTIvE/PAssIvE And
ACTIvE/ACTIvE dEsIgn

We accommodate high availability needs
and handle unpredictable demand two
ways: using active/passive and active/
active designs. In active/passive design,
an application is deployed to two different
locations or availability zones offering IaaS
or PaaS (see Figure 2). Both these locations
can run instances of the application, but only
one location is active at a time. A local load
balancer handles the localized application
instances, and a global load balancer

performs health checks to decide where
to send the end-user requests. With the
databases mirrored on the back-end, if one
location is lost, the health check automatically
fails over to the other location.

For global service availability, we prefer to
use an active/active setup. In this case, both
locations are active, running simultaneously,
handling different users, and ready to fail over
to each other should it become necessary. If
one location fails, global load balancers help
redistribute the load across the remaining
locations. The advantage of active/active is
improved utilization of cloud resources and
a better ability to provide service availability
closer to users through multiple active
locations. Because each cloud is active, cloud
applications must be written for active/active
design, particularly with regard to handling
conflict resolution.

Intel IT is already starting to work with active/
active/active design patterns, which extend
active/active concepts to three sites in a
combination of public and private clouds.

Location 1 – Active

Database

Load Balancer

App1 Instance 1

Application
Stack

App1 Instance 2

Location 2 – Passive

Load Balancer

App1 Instance 1

Application
Stack

App1 Instance 2

Database

Mirror

Global Load Balancer

Active

End-User
Clients

Active/Passive Design
Uses a passive copy of the application and its data to enable failover

Passive

Eventual Consistency

Global Load Balancer

Active

End-User
Clients

Active/Active Design
Uses two active copies of the application and its data to enable failover

Conflict resolution
provided by application

Active

Location 1 – Active

Database

Load Balancer

App1 Instance 1

Application
Stack

App1 Instance 2

Location 2 – Active

Database

Load Balancer

App1 Instance 1

Application
Stack

App1 Instance 2

Figure 2. Our active/passive design, shown on the left, uses a passive copy of the database to enable failover. Our active/active design, shown on the
right, uses two active copies of the application and its data to provide improved service availability, as well as enabling failover.

http://www.intel.com/IT

10 www.intel.com/IT

IT@Intel White Paper Maximizing Cloud Advantages through Cloud-Aware Applications

Teaching Cloud-Aware Development through Code-a-Thons

One successful way Intel IT is training developers is through hands-on training events. We host a series of Cloud-Aware Code-a-Thons
where developers compete with each other to build the best cloud-aware applications and win prizes, such as a new Ultrabook™ device.
Attendees develop cloud-aware applications, and then using platform as a service (PaaS), they quickly deploy applications in Intel’s
enterprise private cloud environment. We selected PaaS because it provides a shared, pre-provisioned environment that is designed to
make it possible to land applications in less than a day.

Our one-day session format uses a variety of training elements.

• A presentation from the Intel IT cloud team on cloud-aware applications

• Hands-on coding of applications and practice landing them

• Roaming cloud experts providing “roadside assistance,” including help in application development, security, hosting, and
other important aspects of cloud-aware applications

• A judging session that chooses winners based on use of cloud-aware design principles—such as security in every layer and
consumption of web services—as well as overall usefulness

These one-day code-a-thons produce interesting applications, such as the following:

• Expert finder. Links employees to Intel experts in particular areas. The application combines on-premise employee information
with social computing profile information such as online resumes.

• Cafeteria application. Uses crowdsourcing techniques to provide up-to-date availability of certain items in an Intel café.

• Parking applications. Helps Intel employees find open parking spots at crowded Intel campuses.

• Sabbatical countdown calendar. Accesses employee information to determine the countdown to eligibility to each
 employee’s next sabbatical.

security
When designing cloud-aware applications,
we expect Intel developers to build security
into the application, as well as to make use of
security controls critical to the enterprise that
are made available as consumable services.
We do not assume that an application is
secure because it is behind a firewall.

To help ensure the survival of the application
on the Internet, developers and the business
must require cloud service providers to
follow best practices for providing a secure
foundation upon which to build cloud-aware
applications. We use security assurance
methodologies that incorporate security
design and testing processes.

Enterprise cloud environments should
provide security services such as identity,
authentication, and entitlement that focus
heavily on integration and risk mitigation.
Enterprise security capabilities developed
as a service or through other methods
allow an application owner to easily
implement standardized controls to deliver
the right balance of controls between the
tenant application, the underlying cloud
infrastructure, and the risk mitigation needs
for the corporate business.

When designing for the cloud, we find that
developers need to consider data handling
and security within the application. Security
should be layered and granular, using

secure coding and access control inside
the application, as well as authorization
to determine if a user has the credentials
to access specific information. We use
encryption to ensure data protection in
transit and at rest.

To ensure effectiveness, Intel application
development teams routinely test and analyze
the security of every API and data source
their application will use or contact. Intel IT’s
security team is currently working on models
for cloud that will enable us to host highly
confidential, business critical, or regulated
information in the cloud. Applications for
these will need even more enhanced security
and more exhaustive testing.

http://www.intel.com/IT

 Maximizing Cloud Advantages through Cloud-Aware Applications IT@Intel White Paper

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel, the Intel logo, and Ultrabook are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All rights reserved. Printed in USA Please Recycle 0513/WWES/KC/PDF 328755-001US

for more information on Intel IT best practices,
visit www.intel.com/it.

rEsulTs
Intel IT’s progress in implementing
cloud service models and providing
architectural guidance and training for
cloud-aware application development
is changing the way Intel developers
think and work. As a result, we are
targeting more applications designed
from the ground up to maximize cloud
advantages and achieve faster time
to market.

We have already reached a number of
milestones.

• Identified over 400 IT employees that
meet the criteria for needing cloud-aware
development skills, helping us target
communications to them and their managers.

• Established a training program specifically
for cloud-aware application development
as part of our “Skill up for the Cloud” career
development materials. We are working on
developing a way to measure proficiency.

• Delivered a series of brown bag sessions
on specific topics related to cloud-aware
applications, including Introduction to the
Cloud, Cloud Hosting Options, and more.

• Hosted three code-a-thons in 2013,
training 60 people so far in California,
New Mexico, and Israel. Five more are
planned for 2013. Trainees came from
both Intel IT and various Intel business
groups. More than 75 additional people
have signed up for upcoming code-a-thons
in Malaysia and India.

COnClusIOn
Intel IT is maximizing the value of
our transition to cloud computing
through an end-to-end model for
cloud architecture. The continuing
development and implementation of
cloud-aware applications plays a critical
role in unlocking this value.

Our adoption of learnings from grid computing
and best cloud practices for consumable web
services and high-availability designs is enabling
Intel developers to quickly create applications
from consumable services such as infrastructure,
platform, and software. Equipped with a multi-
platform front-end, these applications adapt
seamlessly to a wide range of mobile devices.

In continuing our path to the Open Data
Center Alliance’s Cloud Maturity Model, Intel
IT sees an ever-growing percentage of
cloud-aware applications replacing legacy
applications. IT organizations that want to
take a similar path and maximize the value
of their cloud efforts through cloud-aware
applications can take several steps.

• Train architects and developers on cloud-
aware application fundamentals.

• Create reusable application design patterns
and templates.

• Promote the principles of cloud-aware
applications. These include using web
services to speed development, employing
active/active design for high availability, and
designing for failure to ensure resiliency.

rElATEd InfOrmATIOn
visit www.intel.com/it to find white
papers on related topics:

• “ Accelerating Deployment of Cloud
Services Using Open Source Software”

• “Benefits of a Client-aware Cloud”

• “ Best Practices for Building an Enterprise
Public Cloud”

• “ Developing a Highly Available, Dynamic
Hybrid Cloud Environment”

• “ Extending Intel’s Enterprise Private Cloud
with Platform as a Service”

ACrOnyms
BYO bring your own

CLI command line interface

GUI graphical user interface

IaaS infrastructure as a service

JSON JavaScript Object Notation

MTBF mean time between failure

MTTR mean time to recovery

PaaS platform as a service

REST representational state transfer

SaaS software as a service

TB terabyte

VM virtual machine

http://www.intel.com/IT
http://www.intel.com/it

	Executive Overview
	Background
	Business Challenge
	Solution
	Applying Key Learnings
from Grid Computing
	Developing Consumable
Web Services
	Designing for
High Availability
	Security

	Results
	Conclusion
	Related Information
	Acronyms

