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Executive Summary 

Intel, Dell, and researchers at the University of Florida have 

collaborated to help data scientists optimize the analysis of 

healthcare data sets using artificial intelligence (AI). 

Healthcare workloads, particularly in medical imaging, require 

more memory usage than other AI workloads because they 

often use higher resolution 3D images.  

 

In this white paper, we demonstrate how Intel-optimized TensorFlow* on a Dell EMC PowerEdge 

server equipped with 2nd Generation Intel Xeon Scalable Processors with large system memory 

allows for the training of memory-intensive AI/deep-learning models in a scale-up server 

configuration. We believe our work represents the first training of a deep neural network having 

large memory footprint (~ 1 TB) on a single-node server.  We recommend this configuration to 

users who wish to develop large, state-of-the-art AI models but are currently limited by memory. 
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▪ Near-terabyte 
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3D model training 
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Deep Neural Network 
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Motivation 

Healthcare data sets often consist of large, 

multi-dimensional modalities. Deep learning 

(DL) models developed from these data sets 

require both high accuracy and high confidence 

levels to be useful in clinical practice. 

Researchers employ advanced hardware and 

software to speed up this both data- and 

computation-intensive process. 

Medical image analytics, such as semantic 

segmentation, are particularly challenging 

because the model is trained to automatically classify individual voxels from large volumetric 

images [1]. The 3D (and sometimes 4D) nature of this data type demands increased memory 

capacity and processing power when training the model. Consequently, researchers resort to 

tricks, such as downsizing and tiling images, to cope with available system memory or adopting 

shallower neural network topologies to address the high processing requirement. Ultimately, most 

researchers choose a model based on the memory limitations of the hardware rather than based 

on the best possible model design.  

A high-memory CPU-based server solution, such as the 2nd Generation Intel Xeon Scalable 

Processor, presents an attractive architecture for addressing the compute and memory 

requirement of 3D semantic segmentation algorithms, such as 3D U-Net model. With more than 

1 TB of system memory available, the 2nd Generation Intel Xeon Scalable Processor allows 

researchers to develop large DL models that can be several orders of magnitude larger than those 

available on DL accelerators. 

Multimodal Brain Tumor Analysis  

Multimodal brain tumor analysis is an important diagnosis process in the healthcare industry. A 

brain tumor occurs when abnormal cells form within the brain. Gliomas are the most frequent 

primary brain tumors in adults, presumably originating from glial cells and infiltrating the 

surrounding tissues [2]. Current imaging techniques used in clinical studies are limited to basic 

assessments, indicating for example, the presence of gliomas, or limited to non-wholistic 

coverage of the scan as a result of the reliance on rudimentary measurement techniques [3]. By 

“These models were only moderate size, 
and we require more GPU or CPU 
memory to be able to train larger 

models...” 
 

“Our estimations are based on our 
current GPU hardware specifications. We 

hope that switching to a CPU based 
model (and using Intel-optimized 

TensorFlow) will make training large 
model more feasible.” 

 
       - NEUROMOD / University de 
Montreal.   
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replacing current assessments with highly accurate and reproducible measurements, AI and DL 

techniques can automatically analyze brain tumor scans, providing an enormous potential for 

improved diagnosis, treatment planning and patient follow-ups.   

A typical MRI scans of the brain may contain 4D volumes with multimodal, multisite MRI data 

(FLAIR, T1w, T1gd, T2w). With appropriate training data sets, an AI-based brain tumor analysis 

solution should perform segmentation on the images, annotating regions of interest as 

necrotic/active tumor, oedema or benign.  

    

Figure 1. AI-based Gliomas segmentation. 

Computing Challenges  

While the high processing requirement of medical data analysis may be addressed with hardware 

accelerators, such as GPUs, addressing the memory requirement is not straightforward. As an 

example, a GPU accelerator has between 8 GB to 32 GB of memory. Although convolutional 

neural networks may only have several million trainable parameters, the actual memory footprint 

of these models is not due to solely those parameters.  Instead, most of the memory footprint of 

these models comes from the activation (feature) maps in the model (Figure 2, green boxes).  

These activation maps—essentially copies of the original images—are a function of the size of 

the input to the network.  Therefore, models that use large batch, high resolution, high dimensional 

image inputs often require more memory than the accelerator card can accommodate. As a 

simple example, a ResNet-50 topology that can train successfully on a 224x224x3 RGB input 

image may report an out of memory (OOM) error when training on 4096x2160x3 input images 

common to 4k video streams.  

 

To compensate for the memory constraints of accelerator cards, researchers use the following 

“tricks”: 



 

6             Addressing the Memory Bottleneck in AI Model – Training for Healthcare                     

 

 

• Image size: Images are often down sampled to a lower resolution 

• Batch size: Batch sizes are often reduced to one or two images 

• Tiling/Patching: Images are often subsampled into overlapping tiles/patches 

• Model Complexity: Reductions in the number of feature maps and/or layers are often 

necessary 

• Model Parallelism:  Models may be distributed across several compute nodes in a parallel 

fashion 

 

Although these tricks have been used to produce clinically-relevant models, we believe that 

researchers would not choose to use them if it were not for the memory limitations in hardware. 

In other words, these tricks were not created to obtain better models—they are instead necessary 

workarounds for hardware limitations.  We believe that researchers would prefer to use the full 

resolution image without having to account for hyperparameters such as batch size, model 

complexity, or subsampling (tiling/patching).  The large memory capacity of the 2nd Generation 

Intel Xeon Scalable Processor allows researchers this ability. 

Experimental Data  

The medical decathlon dataset [4] is a 3D semantic segmentation challenge with a broad range 

of medical imaging tasks including tumor and cancer diagnoses for various parts of the human 

body, including the liver, brain, lung, colon, and prostate. The images were generated either 

through a CT or an MRI scan at various universities and research centers from across the globe. 

Given this variety of data, the images present the opportunity for data scientists and machine 

learning practitioners to optimize AI algorithms for generalizability in medical imaging tasks with 

a primary focus on semantic segmentation. Thus, the most commonly used metric in 

segmentation tasks, Dice Similarity Coefficient (DSC) [5], along with Normalized Surface Distance 

(NSD) (distance between reconstructed surfaces) are used to assess different aspects of the 

performance of each task and region of interest. In this paper, we focus on the DSC (or simply, 

“dice coefficient”) of the Brain Tumor task from the BraTS dataset, which contains 750 4D MRI 

volumes: 484 for training and 266 for testing.  
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3D U-Net Model 

Convolutional neural networks (CNNs) such as U-Net have been widely successfully in 2D 

segmentation in computer vision problems [6]. However, most medical data used in clinical 

practice consists of 3D volumes. Since only 2D slices can be displayed on a computer screen, 

annotating these large volumes with segmentation labels in a slice-by-slice manner is 

cumbersome and inefficient. 3D U-Net [7], based on U-Net architecture, performs volumetric 

segmentation by taking 3D volumes as input and processing them with corresponding 3D 

operations: 3D convolutions, 3D max-pooling, 3D up-sampling, etc. The resulting output is a 

trained model that reasonably generalizes well since the image slices contain mostly repetitive  

 

structures with corresponding variation. In general, the 3D U-Net model is both computation- and 

memory-intensive.  

Memory Profiling   

Memory footprint is as important to deep-learning training as is raw processing throughput or 

Floating-Point Operations per Second (FLOPs), especially when dealing with volumetric data and 

large models such as 3D U-Net. Table 1. shows the breakdown of the memory requirement of the 

3D U-Net model at the largest available image size (240x240x144 in the case of the BraTS 

dataset) using a kernel size of 3x3x3. As indicated, the estimated system memory requirement is 

a little less than 1 TB for a batch size of 16 MRI scans. On our development server equipped with 

only 192 GB of system memory (Table 2), it took only a couple of minutes after starting model 

training before the system ran out of memory and the whole experiment came to a stall.  

 
 

Figure 2. 3D U-Net architecture. Each box corresponds to a multi-channel feature map; the 
arrows denote different operations. [8] 
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Table 1. Memory requirement for training 3D U-Net. 

 

Image size 
Batch 

size 

Training 

outcome  

Server  

system memory 

Server  

CPU family 
Server tag 

128x128x128 16 Fail 192 GB 1st Generation Intel 

Xeon Scalable 

Processor 

dev server 

144x144x144 8 Success  384 GB 1st Generation Intel 

Xeon Scalable 

Processor 

standard server 

240x240x144 16 -  1.5 TB 2nd Generation Intel 

Xeon Scalable 

Processor 

memory-rich 

server 

 

Table 2. Provisioning training infrastructure for 3D U-Net. We used random pixel values as input 
tensors. Our development server failed when executing just the 3D convolution-kernel part of 

the full 3D U-Net architecture. 
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We overcame this memory bottleneck on our development server by reducing the training 

batch size from 16 down to 2, while reducing the image size to reasonably smaller sized 

dimensions instead of the full-scale image feature map (240x240x144). Of course, this has an 

impact on the model accuracy and convergence time. Next, we upgraded our server’s system 

memory to its maximum supported memory capacity (384 GB), increased the image size of the 

dataset to about one-half, but reduced the batch size by half. In this scenario, the training job 

completed successfully. In the next section, we will go over the details of the training infrastructure 

— with a “memory-rich” server—using the full-scale BraTS images. 

 
 

Figure 3. Benchmarking the memory usage of 3D U-Net model-training over various input 
tensors sizes on an Intel Xeon Scalable Processor-based server with 1.5 TB system 

memory. 
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Training 3D U-Net on a Large-Memory System  

 A single-node server with large memory has the potential to reduce organization’s total cost 

of ownership (TCO), while addressing the memory bottleneck involved with training large models 

with complex datasets. Using a 4-socket 2nd Generation Intel Xeon Scalable Processor system 

on a Dell EMC PowerEdge server equipped with 1.5 TB of system memory (Figure 4), we trained 

the 3D U-Net model with the BraTS dataset (using only the “FLAIR” channel) without the need for 

scaling down the data nor tiling images to fit in memory. We used Intel-optimized TensorFlow - 

available as an Anaconda library [9]  

- and Conda as the Python virtual execution environment. The Intel-optimized TensorFlow 

distribution incorporates Deep Neural Network Library (DNNL) [10] (formerly MKL-DNN), allowing 

us to leverage the processors’ underlying hardware features, including high CPU core count (80 

cores), AVX-512 for floating-point operations, and integrated memory controllers supporting 1TB-

per-socket system memory, to speed up the training process.  

Using this system configuration, we achieved, within 25 training iterations (epochs), close to 

state-of-the-art performance: 0.997 accuracy, 0.125 loss and 0.82 dice coefficient. We also 

profiled the memory footprint of the training task, comparing the results (Figure 5) with our 

theoretical calculations from Table 1 and found our estimations to be accurate for our chosen 

hyperparameters (batch, feature-map, and image sizes). Meanwhile, the training speed (TS) for 

a single step (involving forward pass and backward pass of a single 3D scan) per training epoch 

          
 

                
 

Figure 4. Training infrastructure for 3D U-Net model with a 4-socket 2nd 
Generation Intel Xeon Scalable Processor system on a 2U Dell EMC 

PowerEdge R840 server. 
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was 30 seconds per image, a 3.4x speedup (Figure 6) compared to stock TensorFlow (without 

DNNL) at the same training batch size of 16.  

Figure 7 depicts the prediction performance of the trained model. As observed, the 

segmentation mask from the model predictions closely match the ground truth mask. Using Table 

1 as a reference, along with the TS and epoch count, machine learning practitioners can “plug in” 

their specific training data and hyperparameters to estimate both the required system memory 

and task completion time when training their own deep learning models on Intel architecture.   

 

 

 
 

Figure 5. 3D U-Net memory footprint shows correlation 
with our theoretical calculations from Table 1. 

 

 

 
 

Figure 6. TensorFlow with Deep Neural 
Network Library (DNNL) enabled 

achieves increased performance versus 
stock TensorFlow (without DNNL). 

 
Figure 7. Prediction performance of the trained model, showing a slice of the brain 
from different views. The red overlay is the prediction from the model and the blue 

overlay is the ground truth mask. Any purple voxels are true positives. 
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Conclusions  

In this white paper, we presented the multimodal brain tumor analysis for medical diagnosis, 

highlighted the computing challenges, and presented the 3D U-Net model for the task of 

volumetric image segmentation. We pre-calculated the memory requirement of the model and 

analyzed 3 different server configurations with varying memory capacity: from a “dev server” with 

192 GB of memory to a “memory-rich” server with over 1 TB of memory. With the memory-rich 

sever, we trained the 3D U-Net model using the BraTS dataset (a medical segmentation 

benchmark) and achieved close to state-of-the-art accuracy of 0.997 and dice coefficient of 0.83. 

The maximum memory utilization of the model during training also corresponds to our pre-

calculated memory requirement, suggesting the generalizability of our approach to other memory-

bound deep learning algorithms.  

To the best of our knowledge, the results presented in this paper represent the first milestone 

in training a deep neural network having large memory footprint (close to 1 TB) on a single-node 

server without hardware accelerators like GPUs. Further, by enabling Deep Neural Network 

Library (DNNL) optimizations, we achieved a speedup of 3.4x per training step compared to stock 

TensorFlow. By replicating the single-node, memory-rich configuration described in this paper 

into a multi-node CPU cluster setup, we can expect to see greatly enhanced training performance 

of the 3D U-Net model as well as that of other complex 3D models and data sets, potentially 

reducing organizations TCO [13].   
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Appendix: Reproducibility 

 
Software Data Model 

 

Keras 2.2 
TensorFlow 1.11 

DNNL  
Python 3.6 

Anaconda 3 
Conda 4.6 
Ubuntu 16.04  

 

Dataset name: BRATS 
Tensor image size: 4D 

Train, val, test images: 406, 32, 46 
Dataset license: CC-BY-SA 4.0 

Release: 2.0 04/05/2018 
Dataset source:    
https://www.med.upenn.edu/sbia/brats2017.html  

 

 

Architecture: 3D U-Net 
Input format: Channels last 

Params: 5,650,801 
Trainable params: 5,647,857  

Non-trainable params: 2,944 
Code repository: 
https://github.com/IntelAI/unet  

 

 

Hardware  

 

Architecture:          x86_64 
CPU op-mode(s):        32-bit, 64-bit 
Byte Order:            Little Endian 

CPU(s):                80 
On-line CPU(s) list:   0-79 

Thread(s) per core:    1 
Core(s) per socket:    20 

Socket(s):             4 
NUMA node(s):          4 
Vendor ID:             GenuineIntel 

CPU family:            6 
Model:                 85 

Model name:            Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz 
Stepping:              6 
CPU MHz:               2494.155 

BogoMIPS:              4989.86 
Virtualization:        VT-x 

L1d cache:             32K 
L1i cache:             32K 

L2 cache:              1024K 
L3 cache:              28160K 
NUMA node0 CPU(s):     0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76 

NUMA node1 CPU(s):     1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77 
NUMA node2 CPU(s):     2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78 

NUMA node3 CPU(s):     3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79 
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse 

sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology 
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 
xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm 

abm 3dnowprefetch epb intel_pt tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep 
bmi2 erms invpcid rtm cqm mpx avx512f rdseed adx smap clflushopt clwb avx512cd xsaveopt xsavec xgetbv1 

cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts 

 

 

https://www.med.upenn.edu/sbia/brats2017.html
https://github.com/IntelAI/unet
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