

1 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Whitepaper

Addressing the Memory Bottleneck in AI

Model-Training for Healthcare

Executive Summary

Intel, Dell, and researchers at the University of Florida have

collaborated to help data scientists optimize the analysis of

healthcare data sets using artificial intelligence (AI).

Healthcare workloads, particularly in medical imaging, require

more memory usage than other AI workloads because they

often use higher resolution 3D images.

In this white paper, we demonstrate how Intel-optimized TensorFlow* on a Dell EMC PowerEdge

server equipped with 2nd Generation Intel Xeon Scalable Processors with large system memory

allows for the training of memory-intensive AI/deep-learning models in a scale-up server

configuration. We believe our work represents the first training of a deep neural network having

large memory footprint (~ 1 TB) on a single-node server. We recommend this configuration to

users who wish to develop large, state-of-the-art AI models but are currently limited by memory.

Key Takeaways

▪ Near-terabyte
memory footprint in
3D model training

▪ 3.4x speedup with
Deep Neural Network
Library optimizations

2 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Revisions

Date Description

1/9/2020 Initial release

Acknowledgements

This paper was produced by the following:

Name

Bhavesh Patel Dell EMC

David Ojika PhD, University of Florida

G Anthony Reina MD, Intel

Trent Boyer Intel

Chad Martin Intel

Prashant Shah Intel

3 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Table of Contents

Motivation ... 4

Multimodal Brain Tumor Analysis ... 4

Computing Challenges ... 5

Experimental Data.. 6

3D U-Net Model ... 7

Memory Profiling .. 7

Training 3D U-Net on a Large-Memory System ... 10

Conclusions.. 12

Acknowledgments .. 12

References ... 13

Appendix: Reproducibility... 14

4 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Motivation

Healthcare data sets often consist of large,

multi-dimensional modalities. Deep learning

(DL) models developed from these data sets

require both high accuracy and high confidence

levels to be useful in clinical practice.

Researchers employ advanced hardware and

software to speed up this both data- and

computation-intensive process.

Medical image analytics, such as semantic

segmentation, are particularly challenging

because the model is trained to automatically classify individual voxels from large volumetric

images [1]. The 3D (and sometimes 4D) nature of this data type demands increased memory

capacity and processing power when training the model. Consequently, researchers resort to

tricks, such as downsizing and tiling images, to cope with available system memory or adopting

shallower neural network topologies to address the high processing requirement. Ultimately, most

researchers choose a model based on the memory limitations of the hardware rather than based

on the best possible model design.

A high-memory CPU-based server solution, such as the 2nd Generation Intel Xeon Scalable

Processor, presents an attractive architecture for addressing the compute and memory

requirement of 3D semantic segmentation algorithms, such as 3D U-Net model. With more than

1 TB of system memory available, the 2nd Generation Intel Xeon Scalable Processor allows

researchers to develop large DL models that can be several orders of magnitude larger than those

available on DL accelerators.

Multimodal Brain Tumor Analysis

Multimodal brain tumor analysis is an important diagnosis process in the healthcare industry. A

brain tumor occurs when abnormal cells form within the brain. Gliomas are the most frequent

primary brain tumors in adults, presumably originating from glial cells and infiltrating the

surrounding tissues [2]. Current imaging techniques used in clinical studies are limited to basic

assessments, indicating for example, the presence of gliomas, or limited to non-wholistic

coverage of the scan as a result of the reliance on rudimentary measurement techniques [3]. By

“These models were only moderate size,
and we require more GPU or CPU
memory to be able to train larger

models...”

“Our estimations are based on our
current GPU hardware specifications. We

hope that switching to a CPU based
model (and using Intel-optimized

TensorFlow) will make training large
model more feasible.”

 - NEUROMOD / University de
Montreal.

5 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

replacing current assessments with highly accurate and reproducible measurements, AI and DL

techniques can automatically analyze brain tumor scans, providing an enormous potential for

improved diagnosis, treatment planning and patient follow-ups.

A typical MRI scans of the brain may contain 4D volumes with multimodal, multisite MRI data

(FLAIR, T1w, T1gd, T2w). With appropriate training data sets, an AI-based brain tumor analysis

solution should perform segmentation on the images, annotating regions of interest as

necrotic/active tumor, oedema or benign.

Figure 1. AI-based Gliomas segmentation.

Computing Challenges

While the high processing requirement of medical data analysis may be addressed with hardware

accelerators, such as GPUs, addressing the memory requirement is not straightforward. As an

example, a GPU accelerator has between 8 GB to 32 GB of memory. Although convolutional

neural networks may only have several million trainable parameters, the actual memory footprint

of these models is not due to solely those parameters. Instead, most of the memory footprint of

these models comes from the activation (feature) maps in the model (Figure 2, green boxes).

These activation maps—essentially copies of the original images—are a function of the size of

the input to the network. Therefore, models that use large batch, high resolution, high dimensional

image inputs often require more memory than the accelerator card can accommodate. As a

simple example, a ResNet-50 topology that can train successfully on a 224x224x3 RGB input

image may report an out of memory (OOM) error when training on 4096x2160x3 input images

common to 4k video streams.

To compensate for the memory constraints of accelerator cards, researchers use the following

“tricks”:

6 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

• Image size: Images are often down sampled to a lower resolution

• Batch size: Batch sizes are often reduced to one or two images

• Tiling/Patching: Images are often subsampled into overlapping tiles/patches

• Model Complexity: Reductions in the number of feature maps and/or layers are often

necessary

• Model Parallelism: Models may be distributed across several compute nodes in a parallel

fashion

Although these tricks have been used to produce clinically-relevant models, we believe that

researchers would not choose to use them if it were not for the memory limitations in hardware.

In other words, these tricks were not created to obtain better models—they are instead necessary

workarounds for hardware limitations. We believe that researchers would prefer to use the full

resolution image without having to account for hyperparameters such as batch size, model

complexity, or subsampling (tiling/patching). The large memory capacity of the 2nd Generation

Intel Xeon Scalable Processor allows researchers this ability.

Experimental Data

The medical decathlon dataset [4] is a 3D semantic segmentation challenge with a broad range

of medical imaging tasks including tumor and cancer diagnoses for various parts of the human

body, including the liver, brain, lung, colon, and prostate. The images were generated either

through a CT or an MRI scan at various universities and research centers from across the globe.

Given this variety of data, the images present the opportunity for data scientists and machine

learning practitioners to optimize AI algorithms for generalizability in medical imaging tasks with

a primary focus on semantic segmentation. Thus, the most commonly used metric in

segmentation tasks, Dice Similarity Coefficient (DSC) [5], along with Normalized Surface Distance

(NSD) (distance between reconstructed surfaces) are used to assess different aspects of the

performance of each task and region of interest. In this paper, we focus on the DSC (or simply,

“dice coefficient”) of the Brain Tumor task from the BraTS dataset, which contains 750 4D MRI

volumes: 484 for training and 266 for testing.

7 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

3D U-Net Model

Convolutional neural networks (CNNs) such as U-Net have been widely successfully in 2D

segmentation in computer vision problems [6]. However, most medical data used in clinical

practice consists of 3D volumes. Since only 2D slices can be displayed on a computer screen,

annotating these large volumes with segmentation labels in a slice-by-slice manner is

cumbersome and inefficient. 3D U-Net [7], based on U-Net architecture, performs volumetric

segmentation by taking 3D volumes as input and processing them with corresponding 3D

operations: 3D convolutions, 3D max-pooling, 3D up-sampling, etc. The resulting output is a

trained model that reasonably generalizes well since the image slices contain mostly repetitive

structures with corresponding variation. In general, the 3D U-Net model is both computation- and

memory-intensive.

Memory Profiling

Memory footprint is as important to deep-learning training as is raw processing throughput or

Floating-Point Operations per Second (FLOPs), especially when dealing with volumetric data and

large models such as 3D U-Net. Table 1. shows the breakdown of the memory requirement of the

3D U-Net model at the largest available image size (240x240x144 in the case of the BraTS

dataset) using a kernel size of 3x3x3. As indicated, the estimated system memory requirement is

a little less than 1 TB for a batch size of 16 MRI scans. On our development server equipped with

only 192 GB of system memory (Table 2), it took only a couple of minutes after starting model

training before the system ran out of memory and the whole experiment came to a stall.

Figure 2. 3D U-Net architecture. Each box corresponds to a multi-channel feature map; the
arrows denote different operations. [8]

8 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Table 1. Memory requirement for training 3D U-Net.

Image size
Batch

size

Training

outcome

Server

system memory

Server

CPU family
Server tag

128x128x128 16 Fail 192 GB 1st Generation Intel

Xeon Scalable

Processor

dev server

144x144x144 8 Success 384 GB 1st Generation Intel

Xeon Scalable

Processor

standard server

240x240x144 16 - 1.5 TB 2nd Generation Intel

Xeon Scalable

Processor

memory-rich

server

Table 2. Provisioning training infrastructure for 3D U-Net. We used random pixel values as input
tensors. Our development server failed when executing just the 3D convolution-kernel part of

the full 3D U-Net architecture.

9 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

We overcame this memory bottleneck on our development server by reducing the training

batch size from 16 down to 2, while reducing the image size to reasonably smaller sized

dimensions instead of the full-scale image feature map (240x240x144). Of course, this has an

impact on the model accuracy and convergence time. Next, we upgraded our server’s system

memory to its maximum supported memory capacity (384 GB), increased the image size of the

dataset to about one-half, but reduced the batch size by half. In this scenario, the training job

completed successfully. In the next section, we will go over the details of the training infrastructure

— with a “memory-rich” server—using the full-scale BraTS images.

Figure 3. Benchmarking the memory usage of 3D U-Net model-training over various input
tensors sizes on an Intel Xeon Scalable Processor-based server with 1.5 TB system

memory.

10 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Training 3D U-Net on a Large-Memory System

 A single-node server with large memory has the potential to reduce organization’s total cost

of ownership (TCO), while addressing the memory bottleneck involved with training large models

with complex datasets. Using a 4-socket 2nd Generation Intel Xeon Scalable Processor system

on a Dell EMC PowerEdge server equipped with 1.5 TB of system memory (Figure 4), we trained

the 3D U-Net model with the BraTS dataset (using only the “FLAIR” channel) without the need for

scaling down the data nor tiling images to fit in memory. We used Intel-optimized TensorFlow -

available as an Anaconda library [9]

- and Conda as the Python virtual execution environment. The Intel-optimized TensorFlow

distribution incorporates Deep Neural Network Library (DNNL) [10] (formerly MKL-DNN), allowing

us to leverage the processors’ underlying hardware features, including high CPU core count (80

cores), AVX-512 for floating-point operations, and integrated memory controllers supporting 1TB-

per-socket system memory, to speed up the training process.

Using this system configuration, we achieved, within 25 training iterations (epochs), close to

state-of-the-art performance: 0.997 accuracy, 0.125 loss and 0.82 dice coefficient. We also

profiled the memory footprint of the training task, comparing the results (Figure 5) with our

theoretical calculations from Table 1 and found our estimations to be accurate for our chosen

hyperparameters (batch, feature-map, and image sizes). Meanwhile, the training speed (TS) for

a single step (involving forward pass and backward pass of a single 3D scan) per training epoch

Figure 4. Training infrastructure for 3D U-Net model with a 4-socket 2nd
Generation Intel Xeon Scalable Processor system on a 2U Dell EMC

PowerEdge R840 server.

11 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

was 30 seconds per image, a 3.4x speedup (Figure 6) compared to stock TensorFlow (without

DNNL) at the same training batch size of 16.

Figure 7 depicts the prediction performance of the trained model. As observed, the

segmentation mask from the model predictions closely match the ground truth mask. Using Table

1 as a reference, along with the TS and epoch count, machine learning practitioners can “plug in”

their specific training data and hyperparameters to estimate both the required system memory

and task completion time when training their own deep learning models on Intel architecture.

Figure 5. 3D U-Net memory footprint shows correlation
with our theoretical calculations from Table 1.

Figure 6. TensorFlow with Deep Neural
Network Library (DNNL) enabled

achieves increased performance versus
stock TensorFlow (without DNNL).

Figure 7. Prediction performance of the trained model, showing a slice of the brain
from different views. The red overlay is the prediction from the model and the blue

overlay is the ground truth mask. Any purple voxels are true positives.

12 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Conclusions

In this white paper, we presented the multimodal brain tumor analysis for medical diagnosis,

highlighted the computing challenges, and presented the 3D U-Net model for the task of

volumetric image segmentation. We pre-calculated the memory requirement of the model and

analyzed 3 different server configurations with varying memory capacity: from a “dev server” with

192 GB of memory to a “memory-rich” server with over 1 TB of memory. With the memory-rich

sever, we trained the 3D U-Net model using the BraTS dataset (a medical segmentation

benchmark) and achieved close to state-of-the-art accuracy of 0.997 and dice coefficient of 0.83.

The maximum memory utilization of the model during training also corresponds to our pre-

calculated memory requirement, suggesting the generalizability of our approach to other memory-

bound deep learning algorithms.

To the best of our knowledge, the results presented in this paper represent the first milestone

in training a deep neural network having large memory footprint (close to 1 TB) on a single-node

server without hardware accelerators like GPUs. Further, by enabling Deep Neural Network

Library (DNNL) optimizations, we achieved a speedup of 3.4x per training step compared to stock

TensorFlow. By replicating the single-node, memory-rich configuration described in this paper

into a multi-node CPU cluster setup, we can expect to see greatly enhanced training performance

of the 3D U-Net model as well as that of other complex 3D models and data sets, potentially

reducing organizations TCO [13].

Acknowledgments

Center for Space High-Performance and Resilient Computing (SHREC), University of Florida

University de Montreal

NEUROMOD

Dell EMC

Intel

13 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

References

[1] Swarnendu Ghosh, Nibaran Das, Ishita Das, and Ujjwal Maulik. 2019. Understanding Deep Learning

Techniques for Image Segmentation. ACM Comput. Surv. 52, 4, Article 73 (August 2019), 35 pages.

[2] Holland, E n.d., ‘Progenitor cells and glioma formation’, Current Opinion in Neurology, vol. 14, no. 6,

pp. 683–688.

[3] B. H. Menze et al., "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in IEEE

Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, Oct. 2015.

[4] BRATS dataset https://www.med.upenn.edu/sbia/brats2018.html

[5] Maier-Hein, Lena, Eisenmann, Matthias, Reinke, Annika, Onogur, Sinan, Stankovic, Marko, Scholz,
Patrick, & Full, Peter M. (2018). Is the winner really the best? A critical analysis of common research
practice in biomedical image analysis competitions (Version 1.0.0) Zenodo.

[6] Olaf Ronneberger, Philipp Fischer & Thomas Brox. U-Net: Convolutional Networks for Biomedical

Image Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI),
Springer, LNCS, Vol.9351, 234--241, 2015

[7] Ciçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net: Learning Dense

Volumetric Segmentation from Sparse Annotation. In: Ourselin S., Joskowicz L., Sabuncu M., Unal

G., Wells W. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016.
MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham

[8] H. R. Roth, C. Shen, H. Oda, M. Oda, Y. Hayashi, K. Misawa, and K. Mori, “Deep learning and its

application to medical image segmentation,” Medical Imaging Technology, vol. 36, no. 2, pp. 63– 71,

2018.

[9] Intel Optimization for TensorFlow. https://software.intel.com/en-us/articles/intel-optimization-for-
tensorflow-installation-guide

[10] Deep Neural Network Library. https://intel.github.io/mkl-dnn

[11] Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., &
Davatzikos, C. (2017). Advancing The Cancer Genome Atlas glioma MRI collections with expert

segmentation labels and radiomic features. Scientific data.

[12] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin Kirby, John

Freymann, Keyvan Farahani, and Christos Davatzikos. (2017) Segmentation Labels and Radiomic
Features for the Pre-operative Scans of the TCGA-GBM collection. The Cancer Imaging Archive.

[13] Using Intel® Xeon® for Multi-node Scaling of TensorFlow with Horovod. https://www.intel.ai/using-intel-

xeon-for-multi-node-scaling-of-tensorflow-with-horovod/#gs.mqqqpc

https://www.med.upenn.edu/sbia/brats2018.html
https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
https://intel.github.io/mkl-dnn
https://www.intel.ai/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod/#gs.mqqqpc
https://www.intel.ai/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod/#gs.mqqqpc

14 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

Appendix: Reproducibility

Software Data Model

Keras 2.2
TensorFlow 1.11

DNNL
Python 3.6

Anaconda 3
Conda 4.6
Ubuntu 16.04

Dataset name: BRATS
Tensor image size: 4D

Train, val, test images: 406, 32, 46
Dataset license: CC-BY-SA 4.0

Release: 2.0 04/05/2018
Dataset source:
https://www.med.upenn.edu/sbia/brats2017.html

Architecture: 3D U-Net
Input format: Channels last

Params: 5,650,801
Trainable params: 5,647,857

Non-trainable params: 2,944
Code repository:
https://github.com/IntelAI/unet

Hardware

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian

CPU(s): 80
On-line CPU(s) list: 0-79

Thread(s) per core: 1
Core(s) per socket: 20

Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel

CPU family: 6
Model: 85

Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Stepping: 6
CPU MHz: 2494.155

BogoMIPS: 4989.86
Virtualization: VT-x

L1d cache: 32K
L1i cache: 32K

L2 cache: 1024K
L3 cache: 28160K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76

NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77
NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78

NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse

sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm

abm 3dnowprefetch epb intel_pt tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep
bmi2 erms invpcid rtm cqm mpx avx512f rdseed adx smap clflushopt clwb avx512cd xsaveopt xsavec xgetbv1

cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts

https://www.med.upenn.edu/sbia/brats2017.html
https://github.com/IntelAI/unet

15 Addressing the Memory Bottleneck in AI Model – Training for Healthcare

FTC Disclaimer: For Performance Claims
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that produc t
when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: Tested
by Dell EMC as of 12/17/2019. 4 socket Intel® Xeon® Gold 6248 Processor, 20 cores per socket HT OFF Turbo OFF Total
Memory 1.5TB GB (DDR4, 48 slots/ 32GB), NUMA Not Enabled, KMP_AFFINITY=“granularity=thread,compact”,
OMP_NUM_THREADS=80, KMP_BLOCKTIME=1, Number of intraop threads=80, Number of interop threads=1, Ubuntu 16.04,
Deep Learning Framework: TensorFlow 1.11 with Intel® Deep Neural Network Library (DNNL/MKL-DNN), 3D U-
Net:https://github.com/IntelAI/unet, BS=16, Medical Decathlon (BraTS, http://medicaldecathlon.com/) + synthetic data, Datatype:
FP32
FTC Optimization Notice:
 Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice
Revision #20110804
Security Disclaimer
Performance results are based on testing by Dell EMC as of 12/17/2019 and may not reflect all publicly available security
updates. See configuration disclosure for details. No product or component can be absolutely secure.
Technology Disclaimer
Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at [intel.com].

© 2020 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its

subsidiaries. Other trademarks may be trademarks of their respective owners.

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.intel.com_benchmarks.&d=DwQGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=0vyQx9uGuAOzuHpeZ9OrxA&m=Y-88uXEGweNGk_F3sGbvgjHkNKKldf39vg9AoOTnVPA&s=Xm6MTxhSgrdG4P2_91gFvYvkYoJlCWhC24IaLnB7Ug8&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_IntelAI_unet&d=DwMGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=0vyQx9uGuAOzuHpeZ9OrxA&m=Y-88uXEGweNGk_F3sGbvgjHkNKKldf39vg9AoOTnVPA&s=uqSr0a2riCJi-1FF2OREQ0akGVd0kgOUfK9V9Dk98O0&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__medicaldecathlon.com_&d=DwMGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=0vyQx9uGuAOzuHpeZ9OrxA&m=Y-88uXEGweNGk_F3sGbvgjHkNKKldf39vg9AoOTnVPA&s=GqGzsrhIQF3AGzaYsFH2IwGgtYGr6kVhHFuEAHigvDc&e=
http://intel.com/

