
Order No.: H76473-1.0

Intel® Performance Scaled
Messaging 2 (PSM2)
Programmer’s Guide

November 2015

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
2 Order No.: H76473-1.0

Legal Lines and DisclaimersNo license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
The products and services described may contain defects or errors which may cause deviations from published specifications.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting: http://www.intel.com/design/literature.htm
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2015, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 3

Contents

Contents

1.0 Introduction ..6
1.1 Documentation Conventions..6
1.2 License Agreements...7

2.0 Intel® PSM2 Messaging API...8
2.1 Compatibility ..8
2.2 Endpoint Communication Model...8
2.3 PSM2 Components...9
2.4 PSM2 Communication Progress Guarantees...9
2.5 PSM2 Completion Semantics ...9
2.6 PSM2 Error Handling ..9
2.7 Environment Variables ... 10

2.7.1 PSM2_DEVICES .. 10
2.7.2 PSM2_MEMORY .. 10
2.7.3 PSM2_MQ_SENDREQS_MAX ... 11
2.7.4 PSM2_MQ_RECVREQS_MAX ... 11
2.7.5 PSM2_MQ_RNDV_HFI_THRESH... 11
2.7.6 PSM2_MQ_RNDV_SHM_THRESH ... 11
2.7.7 PSM2_RANKS_PER_CONTEXT ... 11
2.7.8 PSM2_RCVTHREAD ... 11
2.7.9 PSM2_SHAREDCONTEXTS .. 12
2.7.10 PSM2_SHAREDCONTEXTS_MAX .. 12
2.7.11 PSM2_TID.. 12
2.7.12 PSM2_TRACEMASK ... 12

2.8 HFI Environment Variables.. 12
2.8.1 HFI_DISABLE_MMAP_MALLOC .. 12
2.8.2 HFI_NO_CPUAFFINITY ... 13
2.8.3 HFI_UNIT .. 13

3.0 Intel® PSM2 Component Documentation ... 14
3.1 Matched Queues Interface .. 14

3.1.1 MQ Tag Matching .. 14
3.1.2 MQ Message Reception .. 15
3.1.3 MQ Completion Semantics.. 16
3.1.4 MQ Progress Requirements... 17

4.0 Intel® PSM2 Component Functional Documentation .. 18
4.1 PSM2 Initialization and Maintenance... 18

4.1.1 Data Structures .. 18
4.1.2 Defines.. 18
4.1.3 Typedefs.. 19
4.1.4 Enumerations ... 19
4.1.5 Functions... 21

4.1.5.1 psm2_init ... 21
4.1.5.2 psm2_finalize ... 22
4.1.5.3 psm2_error_register_handler .. 23
4.1.5.4 psm2_error_defer ... 23
4.1.5.5 psm2_error_get_string... 23

4.2 PSM2 Device Endpoint Management... 24
4.2.1 Data Structures .. 24
4.2.2 Defines.. 24
4.2.3 Typedefs.. 25
4.2.4 Functions... 25

Contents

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
4 Order Number: H76473-1.0

4.2.4.1 psm2_map_nid_hostname ..26
4.2.4.2 psm2_ep_num_devunits ...27
4.2.4.3 psm2_uuid_generate..27
4.2.4.4 psm2_ep_open_opts_get_defaults ...27
4.2.4.5 psm2_ep_open..28
4.2.4.6 psm2_ep_epid_share_memory ..30
4.2.4.7 psm2_ep_close..31
4.2.4.8 psm2_ep_connect..31
4.2.4.9 psm2_ep_disconnect ..33
4.2.4.10 psm2_poll...35
4.2.4.11 psm2_epaddr_setlabel..35

4.3 PSM2 Matched Queues ...36
4.3.1 Modules ...36
4.3.2 Data Structures...36

4.3.2.1 psm2_mq_status ...36
4.3.2.2 MQ Statistics Structure ...37
4.3.2.3 psm2_tag_t ..37
4.3.2.4 psm2_mq_status2 ...37

4.3.3 Defines ..38
4.3.4 Typedefs ..38
4.3.5 Functions ...39

4.3.5.1 psm2_mq_init ...40
4.3.5.2 psm2_mq_finalize..42
4.3.5.3 psm2_mq_irecv...42
4.3.5.4 psm2_mq_irecv2 ...43
4.3.5.5 psm2_mq_send ...44
4.3.5.6 psm2_mq_send2 ...45
4.3.5.7 psm2_mq_isend ..46
4.3.5.8 psm2_mq_isend2 ..47
4.3.5.9 psm2_mq_iprobe...48
4.3.5.10 psm2_mq_iprobe2 ...49
4.3.5.11 psm2_mq_improbe ..50
4.3.5.12 psm2_mq_improbe2 ..50
4.3.5.13 psm2_mq_imrecv ..51
4.3.5.14 psm2_mq_ipeek ..52
4.3.5.15 psm2_mq_ipeek2 ..53
4.3.5.16 psm2_mq_wait..54
4.3.5.17 psm2_mq_wait2 ..55
4.3.5.18 psm2_mq_test ..56
4.3.5.19 psm2_mq_test2...57
4.3.5.20 psm2_mq_cancel ...58
4.3.5.21 psm2_mq_get_stats...59

4.4 PSM2 Matched Queue Options ...59
4.4.1 Defines ..59
4.4.2 Functions ...60

4.4.2.1 psm2_mq_getopt...60
4.4.2.2 psm2_mq_setopt ...60

5.0 Intel® PSM2 Sample Program ..62
5.1 Prerequisites ...62
5.2 Setting Up the Program ..62
5.3 Sample Code...62

Figures
N/A

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 5

Revision History

Tables
1 Initialization and Maintenance Defines .. 18
2 Initialization and Maintenance Typedefs .. 19
3 Error Type Enumerators.. 19
4 Initialization and Maintenance Functions ... 21
5 Endpoint Defines ... 24
6 Endpoint Typedefs ... 25
7 Endpoint Functions .. 25
8 Matched Queues Data Structures ... 36
9 Matched Queues Defines... 38
10 Matched Queues Typedefs .. 38
11 Matched Queue Functions ... 39
12 Matched Queue Options Defines... 59
13 Matched Queue Options Functions.. 60

Revision History

Date Revision Description

November 2015 1.0
Document has been updated for Revision 1.0.
Starting with this release, the Intel® PSM2 API library is a stand-alone package with its own
documentation.

August 2015 0.7 Document has been updated for Revision 0.7. Added Chapter 5.0, “Intel® PSM2 Sample Program.”

April 2015 0.5 First release of the PSM2 manual with Intel® Omni-Path extensions.

Introduction

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
6 Order No.: H76473-1.0

1.0 Introduction

This manual is a reference for programmers working with the Intel® PSM2 Application
Programming Interface (API). The Performance Scaled Messaging 2 API (PSM2 API) is a
low-level user-level communications interface.

Note: In the previous release, the Intel® PSM API was updated to include PSM2 support for
the Intel® Omni-Path family of products. However, there has been an implementation
change and starting with this release, the Intel® PSM2 API library is a stand-alone
package with its own documentation. PSM2 has been extended from the Intel® True
Scale PSM interface, but is not compatible unless used with the provided interface
library. Refer to the Intel® Omni-Path Fabric Host Software User Guide for details.

1.1 Documentation Conventions
This guide uses the following documentation conventions:

• Note: provides additional information.
• Caution: indicates the presence of a hazard that has the potential of causing

damage to data or equipment.
• Warning: indicates the presence of a hazard that has the potential of causing

personal injury.
• Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this

guide, and links to Web sites are also shown in blue. For example:
— See “License Agreements” on page 7.
— For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as a menu items, buttons,
check boxes, or column headings. For example:
— Click the Start button, point to Programs, point to Accessories, and then

click Command Prompt.
• Text in Courier font indicates a file name, directory path, or command line text.

For example:
— Enter the following command: sh ./install.bin

• Key names and key strokes are indicated with UPPERCASE:
— Press CTRL+P.

• Text in italics indicates terms, emphasis, variables, or document titles. For
example:
— For a complete listing of license agreements, refer to the Intel Software End

User License Agreement.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 7

Introduction

1.2 License Agreements
This software is provided under one or more license agreements. Please refer to the
license agreement(s) provided with the software for specific detail. Do not install or use
the software until you have carefully read and agree to the terms and conditions of the
license agreement(s). By loading or using the software, you agree to the terms of the
license agreement(s). If you do not wish to so agree, do not install or use the software.

Intel® PSM2 Messaging API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
8 Order No.: H76473-1.0

2.0 Intel® PSM2 Messaging API

The Intel® PSM2 (Performance Scaled Messaging 2) API is a high-performance vendor-
specific protocol that provides a low-level communications interface for the Intel®
Omni-Path family of products. PSM2 enables mechanisms necessary to implement
higher level communications interfaces in parallel environments.

PSM2 targets clusters of multicore processors and it transparently implements two
levels of communication: intra-node shared memory communication and inter-node
communication.

2.1 Compatibility
PSM2 can coexist with other Intel software distributions, such as OpenFabrics, which
allows applications to simultaneously target PSM2-based and non-PSM2-based
applications on a single node without changing any system-level configuration.
However, unless otherwise noted, PSM2 does not support running PSM2-based and
non-PSM2-based communication within the same user process.

PSM2 is currently a single-threaded library. This means that you cannot make any
concurrent PSM2 library calls. While threads may be a valid execution model for the
wider set of potential PSM2 clients, applications should currently expect better effective
use of Intel® Omni-Path resources (and hence better performance) by dedicating a
single PSM2 communication endpoint to every CPU core.

Except where noted, PSM2 does not assume an SPMD (single program, multiple data)
parallel model and extends to MPMD (multiple program, multiple data) environments in
specific areas. However, PSM2 assumes the runtime environment to be homogeneous
on all nodes in bit width (64-bit only) and endianness (little or big), and fails at startup
if any of these assumptions do not hold.

2.2 Endpoint Communication Model
PSM2 follows an endpoint communication model where an endpoint is defined as an
object (or handle) instantiated to support sending and receiving messages to other
endpoints. In order to prevent PSM2 from being tied to a particular parallel model (such
as SPMD), you retain control over the parallel layout of endpoints. Opening endpoints
(psm2_ep_open) and connecting endpoints to enable communication
(psm2_ep_connect) are two decoupled mechanisms. If you do not dynamically
change the number of endpoints beyond parallel startup, you can combine both
mechanisms at startup. If you wish to manipulate the location and amount of endpoints
at runtime, you can do so by explicitly connecting sets or subsets of endpoints.

As a side effect, this greater flexibility allows you to manage a two-stage initialization
process. In the first stage of opening an endpoint (psm2_ep_open), you obtain an
opaque handle to the endpoint and a globally distributable endpoint identifier
(psm2_epid_t). Prior to the second stage of connecting endpoints
(psm2_ep_connect), you must distribute all relevant endpoint identifiers through an
out-of-band mechanism. Once the endpoint identifiers are successfully distributed to all
processes that wish to communicate, you connect all endpoint identifiers to the locally

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 9

Intel® PSM2 Messaging API

opened endpoint (psm2_ep_connect). In connecting the endpoints, you obtain an
opaque endpoint address (psm2_epaddr_t), which is required for all PSM2
communication primitives.

2.3 PSM2 Components
PSM2 exposes a single endpoint initialization model, but enables various levels of
communication functionality and semantics through components. The first major
component available in PSM2 is PSM2 Matched Queues (Section 3.1, “Matched Queues
Interface” on page 14). Matched Queues (MQ) present a queue-based communication
model with the distinction that queue consumers use a 3-tuple of metadata to match
incoming messages against a list of preposted receive buffers. The MQ semantics are
sufficiently akin to MPI to cover the entire MPI-1.2 standard. With future releases of the
PSM2 interface, more components may be exposed to accommodate users that
implement parallel communication models that deviate from the Matched Queue
semantics.

2.4 PSM2 Communication Progress Guarantees
PSM2 internally ensures progress of both intra-node and inter-node messages, but not
autonomously. This means that while performance does not depend greatly on how you
decide to schedule communication progress, explicit progress calls are required for
correctness. The psm2_poll function is available to make progress over all PSM2
components in a generic manner. For more information on making progress over many
communication operations in the MQ component, see Section 3.1.4, “MQ Progress
Requirements” on page 17.

2.5 PSM2 Completion Semantics
PSM2 currently only implements the MQ component, which documents its own
message completion semantics (see Section 3.1.3, “MQ Completion Semantics” on
page 16).

2.6 PSM2 Error Handling
PSM2 exposes a list of user and runtime errors enumerated in psm2_error. While
most errors are fatal in that you are not expected to be able to recover from them,
PSM2 still allows some level of control. By default, PSM2 returns all errors, but as a
convenience, allows you to either defer errors internally to PSM2 or to have PSM2 call a
user-provided error callback function.

PSM2 attempts to deallocate its resources as a best effort, but exits are always non-
collective with respect to endpoints opened in other processes. You are expected to be
able to handle non-collective exits from any endpoint and cleanly and independently
terminate the parallel environment.

Local error handling can be handled in three modes, two of which are predefined PSM2
mechanisms:

• PSM2-internal error handler (PSM2_ERRHANDLER_PSM_HANDLER)
• No-op PSM2 error handler where errors are returned

(PSM2_ERRHANDLER_NO_HANDLER)
• User-registered error handlers

The default PSM2-internal error handler effectively frees you from explicitly handling
the return values of every PSM2 function, but may not return in a function determined
to have caused a fatal error.

Intel® PSM2 Messaging API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
10 Order No.: H76473-1.0

The No-op PSM2 error handler bypasses all error handling functionality and always
returns the error. You can then use psm2_error_get_string to obtain a generic
string from an error code (compared to a more detailed error message available
through registering of error handlers).

For even more control, you can register your own error handlers to have access to
more precise error strings and selectively control when and when not to return to
callers of PSM2 functions. All error handlers shown defer error handling to PSM2 for
errors that are not recognized using psm2_error_defer. Deferring an error from a
custom error handler is equivalent to relying on the default error handler.

Errors and error handling can be individually registered either globally or per-endpoint:
• Per-endpoint error handling captures errors for functions where the error scoping

is determined to be over an endpoint. This includes all communication functions
that include an EP or MQ handle as the first parameter.

• Global error handling captures errors for functions where a particular endpoint
cannot be identified or for psm2_ep_open, where errors (if any) occur before the
endpoint is opened.

Error handling is controlled by registering error handlers
(psm2_error_register_handler). The global error handler can be set at any time
(even before psm2_init), whereas a per-endpoint error handler can be set as soon as
a new endpoint is successfully created. If a per-endpoint handle is not registered, the
per-endpoint handler inherits from the global error handler at time of open.

2.7 Environment Variables
This section describes how to control PSM2 behavior using environment variables.

2.7.1 PSM2_DEVICES

PSM2 implements the following devices for communication: self, shm, and hfi. For
PSM2 jobs that do not require shared-memory communications, PSM2_DEVICES can
be specified as self, hfi. Similarly, for shared-memory only jobs, the hfi device can
be disabled. You must ensure that the endpoint IDs passed in psm2_ep_connect do
not require a device that has been explicitly disabled. In some instances, enabling only
the devices that are required may improve performance.

MPI users not using Intel® Omni-Path can set this to enable running in shared memory
mode on a single node. It is automatically set for Intel® Omni-Path MPI.

Default: PSM2_DEVICES="self,shm,hfi"

For shared-memory only jobs: PSM2_DEVICES="shm,self"

2.7.2 PSM2_MEMORY

Memory usage mode. This scales the resource allocation according to normal (default)
size clusters or large clusters. Normal is expected to be sufficient even on very large
cluster sizes, but large is available in case some of the resources allocation is too
restrictive. Although this case is unlikely, comprehensive error messages are apparent
to large-scale users if normal is insufficient.

Default: PSM2_MEMORY=normal

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 11

Intel® PSM2 Messaging API

2.7.3 PSM2_MQ_SENDREQS_MAX

This sets the maximum number of isend requests in flight.

Default: PSM2_MQ_SENDREQS_MAX=1048576

2.7.4 PSM2_MQ_RECVREQS_MAX

This sets the maximum number of irecv requests in flight.

Default: PSM2_MQ_RECVREQS_MAX=1048576

2.7.5 PSM2_MQ_RNDV_HFI_THRESH

Sets the threshold (in bytes) for the hfi eager-to-rendezvous switchover.

Default: PSM2_MQ_RNDV_HFI_THRESH=64000

2.7.6 PSM2_MQ_RNDV_SHM_THRESH

Sets the threshold (in bytes) for shared memory eager-to-rendezvous switchover.

Default: PSM2_MQ_RNDV_SHM_THRESH=16000

2.7.7 PSM2_RANKS_PER_CONTEXT

Provides an alternate way of specifying how PSM should use contexts. The variable is
the number of ranks that share each hardware context. The supported values include:

1 no context sharing
2 2-way context sharing
3 3-way context sharing
4 4-way context sharing
8 8-way context sharing (maximum)

The same value of PSM2_RANKS_PER_CONTEXT must be used for all ranks on a node,
and typically, you use the same value for all nodes in that job. Either
PSM2_RANKS_PER_CONTEXT or PSM2_SHAREDCONTEXTS_MAX can be used in a
particular job, but not both. If both are used and the settings are incompatible, then
PSM2 reports an error and the job fails to start up.

Default:
If this value is not set, then by default PSM2 assigns one context per rank when
possible. However, if too many MPI ranks are present, then context sharing is
enabled to be able to give each rank a portion of a context. The value is determined
by the number of ranks present at job launch. Since context sharing impacts
performance by way of limiting queue sizes, PSM2 only enables the minimum
required level of context sharing to evenly spread the ranks among the contexts
and retain what performance is possible.

2.7.8 PSM2_RCVTHREAD

PSM2 uses a communication thread to help parts of the Intel® Omni-Path MPI protocol
ensure communication progress. This thread does not aggressively compete with
resources against the main computation thread, but can be disabled by setting
PSM2_RCVTHREAD=0.

Default: PSM2_RCVTHREAD=0x1

Intel® PSM2 Messaging API

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
12 Order No.: H76473-1.0

2.7.9 PSM2_SHAREDCONTEXTS

Enable shared contexts. Context sharing is on by default.

Default (either option works):
PSM2_SHAREDCONTEXTS=1
PSM2_SHAREDCONTEXTS=YES

To explicitly disable context sharing, set this environment variable in one of the two
following ways:

PSM2_SHAREDCONTEXTS=0
PSM2_SHAREDCONTEXTS=NO

2.7.10 PSM2_SHAREDCONTEXTS_MAX

If required for resource sharing in batch systems, users can restrict the number of
Intel® Omni-Path contexts that are made available on each node of an MPI job by
setting that number in the PSM2_SHAREDCONTEXTS_MAX environment variable. The
default is to use all possible contexts.

Default: PSM2_SHAREDCONTEXTS_MAX=8

2.7.11 PSM2_TID

TID (Token ID) protocol flags. A value of 0 disables the protocol.

Default: PSM2_TID=0x1

2.7.12 PSM2_TRACEMASK

Depending on the value of the tracemask, various parts of PSM2 output debugging
information. With a default value of 0x1, informative messages are printed; this value
should be considered a minimum. At 0x101, startup and finalization messages are
added to the output. At 0x1c3, every communication event is logged and should hence
be used for extreme debugging only.

Default: PSM2_TRACEMASK=0x1

2.8 HFI Environment Variables
The following HFI environment variables are also related to PSM2 functionality.

2.8.1 HFI_DISABLE_MMAP_MALLOC

Disable mmap for malloc().

Uses glibc mallopt() to disable all uses of mmap by setting M_MMAP_MAX to 0 and
M_TRIM_THRESHOLD to -1. Refer to the Linux man page for mallopt() for details.

Default: HFI_DISABLE_MMAP_MALLOC=NO
Note: Choosing YES may reduce the memory footprint required by your program,

at the potential expense of increasing CPU overhead associated with
memory allocation and memory freeing. The default NO option is better for
performance.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 13

Intel® PSM2 Messaging API

2.8.2 HFI_NO_CPUAFFINITY

Prevents PSM2 from setting affinity. By default, no affinity is set.

Default: HFI_NO_CPUAFFINITY=NO

2.8.3 HFI_UNIT

Device Unit number. Used to restrict the number of contexts used on a Intel® Omni-
Path unit. When context sharing is enabled on a system with multiple Intel® Omni-Path
boards (units) and the HFI_UNIT environment variable is set, the number of Intel®
Omni-Path contexts made available to MPI jobs are restricted to the number of
contexts available on that unit. By default, HFI_UNIT is unset; all available contexts
from all units are autodetected and used, and are made available to MPI jobs.

PSM2_OK If option could be retrieved.

PSM2_PARAM_ERR If the option is not a valid option number.

PSM2_OPT_READONLY If the option to be set is a read-only option (currently no MQ options are
read-only).

Intel® PSM2 Component Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
14 Order No.: H76473-1.0

3.0 Intel® PSM2 Component Documentation

3.1 Matched Queues Interface
The Matched Queues (MQ) interface implements a queue-based communication model
with the distinction that queue message consumers use a 3-tuple of metadata to match
incoming messages against a list of preposted receive buffers. These semantics are
consistent with those presented by MPI-1.2, and all the features and side-effects of
message passing find their way into matched queues. There is currently a single MQ
context. If need be, MQs may expose a function to allocate more than one MQ context
in the future. Since an MQ is implicitly bound to a locally opened endpoint handle, all
MQ functions use an MQ handle instead of an EP handle as a communication context.

3.1.1 MQ Tag Matching

Note: Tag matching is different in PSM2 compared to the original version. PSM2 tags are
96-bit values of type psm2_mq_tag_t. The behavior of send and receive tags and tag
selectors is the same, and any 64-bit tags used in existing code are automatically
padded to 96 bits within PSM2. The functions designed for 64-bit tags remain in PSM2
and can exist within the same program. Since these two types of functions can operate
on the same MQ, care should be taken to avoid unintentional tag matches. Intel
recommends that you use a single tag size within a single program.

Users of PSM2 can interpret the 96-bit tag type as a sequence of three 32-bit integers,
or any other convenient interpretation scheme. The extended tags can be helpful in
high node-count environments.

A successful MQ tag match requires a 3-tuple of unsigned 96-bit ints, two of which are
provided by the receiver when posting a receive buffer (psm2_mq_irecv and
psm2_mq_irecv2) and the last is provided by the sender as part of every message
sent (psm2_mq_send and psm2_mq_isend). Since MQ is a receiver-directed
communication model, the tag matching done at the receiver involves matching a sent
message send tag (stag) with the tag (rtag) and tag selector (rtagsel) attached to
every preposted receive buffer. The incoming stag is compared to the posted rtag but
only for significant bits set in the rtagsel. The rtagsel can be used to mask off
parts (or even all) of the bitwise comparison between sender and receiver tags. A
successful match causes the message to be received into the buffer with which the tag
is matched. If the incoming message is too large, it is truncated to the size of the
posted receive buffer. The bitwise operation corresponding to a successful match and
receipt of an expected message amounts to the following expression evaluating as
true:

((stag ^ rtag) & rtagsel) == 0

You must encode (pack) into the 96-bit unsigned integers, including employing the
rtagsel tag selector as a method to wildcard part or all of the bits significant in the
tag matching operation. For example, MPI could use a triple based on context (MPI
communicator), source rank, and send tag.

Note: The following code example will be updated in a future release of this document.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 15

Intel® PSM2 Component Documentation

The following code example shows how the triple can be packed into 64 bits:

// 64-bit send tag formed by packing the triple:
// (context_id_16bits | source_rank_16bits | send_tag_32bits)

stag = ((((context_id)&0xffffULL)<<48)| \
(((source_rank)&0xffffULL)<<32)| \
(((send_tag)&0xffffffffULL)));

Similarly, the receiver applies the rtag matching bits and rtagsel masking bits
against a list of send tags and returns the first successful match. Zero bits in the tagsel
can be used to indicate wildcarded bits in the 64-bit tag, which can be useful for
implementing MPI’s MPI_ANY_SOURCE and MPI_ANY_TAG. Following the example bit
splicing in the previous stag example:

// Example MPI implementation
// where MPI_COMM_WORLD implemented as 0x3333
// MPI_Irecv source_rank=MPI_ANY_SOURCE,
// tag=7, comm=MPI_COMM_WORLD

rtag = 0x3333000000000007;
rtagsel = 0xffff0000ffffffff;

// MPI_Irecv source_rank=3, tag=MPI_ANY_TAG,
// comm=MPI_COMM_WORLD

rtag = 0x3333000300000000;
rtagsel = 0xffffffff80000000; // can’t ignore sign bit in tag

// MPI_Irecv source_rank=MPI_ANY_SOURCE,
// tag=MPI_ANY_TAG, comm=MPI_COMM_WORLD

rtag = 0x3333000300000000;
rtagsel = 0xffff000080000000; // can’t ignore sign bit in tag

Applications that do not follow tag matching semantics can simply always pass a value
of 0 for rtagsel, which always yields a successful match to the first preposted buffer.
If a message cannot be matched to any of the preposted buffers, the message is
delivered as an unexpected message.

3.1.2 MQ Message Reception

MQ messages are either received as expected or unexpected:
• The received message is expected if the incoming message tag matches the

combination of tag and tag selector of at least one of the user-provided receive
buffers preposted with psm2_mq_irecv or psm2_mq_irecv2.

• The received message is unexpected if the incoming message tag doesn’t match
any combination of tag and tag selector from all the user-provided receive buffers
preposted with psm2_mq_irecv or psm2_mq_irecv2.

The difference between psm2_mq_irecv() and psm2_mq_irecv2() is that
psm2_mq_irecv() does not specify where the message should come from; it purely
relies on the tag matching mechanism and the message could come from any other
source process. However, psm2_mq_irecv2() has an additional argument to specify
the source process, where only messages from this specified process can match the
receiving operation. One special case for psm2_mq_irecv2() is to specify
PSM2_MQ_TAG_ANY for the source process argument, which is equivalent to
psm2_mq_irecv(). Therefore, psm2_mq_irecv() is equivalent to a call to
psm2_mq_irecv2() with PSM2_MQ_TAG_ANY as the source value.

Intel® PSM2 Component Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
16 Order No.: H76473-1.0

Unexpected messages are messages buffered by the MQ library until a receive buffer
that can match the unexpected message is provided. With Matched Queues and MPI
alike, unexpected messages can occur as a side-effect of the programming model,
whereby the arrival of messages can be slightly out of step with receive buffer
ordering. Unexpected messages can also be triggered by the difference between the
rate at which a sender produces messages and the rate at which a paired receiver can
post buffers and hence consume the messages.

In all cases, too many unexpected messages can negatively affect performance. Use
some of the following mechanisms to reduce the effect of added memory allocations
and copies that result from unexpected messages:

• If and when possible, receive buffers should be posted as early as possible and
ideally before calling into the progress engine.

• Use rendezvous messaging that can be controlled with PSM2_MQ_RNDV_HFI_SZ
and PSM2_MQ_RNDV_SHM_SZ options. These options default to values determined
to make effective use of bandwidth, and hence not advisable for all communication
message sizes. However, rendezvous messaging inherently prevents unexpected
messages by synchronizing the sender with the receiver.

• The amount of memory that is allocated to handle unexpected messages can be
bounded by adjusting the Global PSM2_MQ_MAX_SYSBUF_MBYTES option.

• MQ statistics, such as the amount of received unexpected messages and the
aggregate amount of unexpected bytes are available in the psm2_mq_stats
structure.

Whenever a match occurs, whether the message is expected or unexpected, you must
ensure that the message is not truncated. Message truncation occurs when the size of
the preposted buffer is less than the size of the incoming matched message. MQ
correctly handles message truncation by always copying the appropriate amount of
bytes as to not overwrite any data. While it is valid to send less data than the amount
of data that has been preposted, messages that are truncated are marked
PSM2_MQ_TRUNCATION as part of the error code in the message status structure
(psm2_mq_status_t).

The psm2_mq_status_t structure also returns the source ID of the message. During
PSM2 initialization time, each process registers an application interpreted ID. When a
message from that process is received by any other process, the application interpreted
ID is returned in the status structure so that application can interpret where the
message comes from. The source ID is returned in the status structure, regardless of
which receiving function is used to receive the message. If a process did not register
such ID, the default ID is -1.

3.1.3 MQ Completion Semantics

Message completion in Matched Queues follows local completion semantics. When
sending an MQ message, it is deemed complete when MQ guarantees that the source
data has been sent and that the entire input source data memory location can be safely
overwritten. As with standard Message Passing, MQ does not make any remote
completion guarantees for sends. MQ does however, allow a sender to synchronize with
a receiver to send a synchronous message which sends a message only after a
matching receive buffer has been posted by the receiver (PSM2_MQ_FLAG_SENDSYNC).

A receive is deemed complete after it has matched its associated receive buffer with an
incoming send and that the data from the send has been completely delivered to the
receive buffer.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 17

Intel® PSM2 Component Documentation

3.1.4 MQ Progress Requirements

You must explicitly ensure progress on MQs for correctness. The progress requirement
holds even if certain areas of the MQ implementation require less network attention
than others, or if progress may internally be guaranteed through interrupts. The main
polling function, psm2_poll, is the most general form of ensuring process on a given
endpoint. Calling psm2_poll ensures that progress is made over all the MQs and other
components instantiated over the endpoint passed to psm2_poll.

While psm2_poll is the only way to directly ensure progress, other MQ functions
conditionally ensure progress depending on how they are used:

• psm2_mq_wait and psm2_mq_wait2 employ polling and wait until the request is
completed. For blocking communication operations where the caller is waiting on a
single send or receive to complete, psm2_mq_wait or psm2_mq_wait2 usually
provides the best responsiveness in terms of latency.

• psm2_mq_test and psm2_mq_test2 test a particular request for completion, but
never directly or indirectly ensure progress because they only test the completion
status of a request, nothing more. See functional documentation for
psm2_mq_test and psm2_mq_test2 for details.

• psm2_mq_ipeek and psm2_mq_ipeek2 ensure progress if and only if the MQ’s
completion queue is empty. These functions do not ensure progress as long as the
completion queue is non-empty. If you always aggressively process all elements of
the MQ completion queue as part of your own progress engine, you indirectly
always ensure MQ progress. The ipeek or ipeek2 mechanism is the preferred
way for ensuring progress when many non-blocking requests are in flight, since
these functions return requests in the order in which they complete. Depending on
how communication is initiated and completed, this may be preferable to calling
other progress functions on individual requests.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
18 Order No.: H76473-1.0

4.0 Intel® PSM2 Component Functional
Documentation

4.1 PSM2 Initialization and Maintenance

4.1.1 Data Structures

struct psm2_optkey

Option key/pair structure. Currently only used in MQ.

Data Fields:

4.1.2 Defines

uint32_t key Option key.

void * value Key value.

Table 1. Initialization and Maintenance Defines

Define Description

#define PSM2_VERNO Header-defined Version number.

#define PSM2_VERNO_MAJOR Header-defined Major Version Number.

#define PSM2_VERNO_MINOR Header-defined Minor Version Number.

#define PSM2_ERRHANDLER_DEFAULT
Legacy value; included for backwards compatibility.
Use PSM2_ERRHANDLER_PSM_HANDLER instead.

#define PSM2_ERRHANDLER_NOP
Legacy value; included for backwards compatibility.
Use PSM2_ERRHANDLER_NO_HANDLER instead.

#define PSM2_ERRHANDLER_PSM_HANDLER PSM2 error handler as explained in PSM2 Error Handling.

#define PSM2_ERRHANDLER_NO_HANDLER Bypasses the default PSM2 error handler and returns all errors
(this is the default).

#define PSM2_ERRSTRING_MAXLEN Maximum error string length.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 19

Intel® PSM2 Component Functional Documentation

4.1.3 Typedefs

4.1.4 Enumerations

enum psm2_error {PSM2_OK, PSM2_OK_NO_PROGRESS, PSM2_PARAM_ERR,
PSM2_NO_MEMORY, PSM2_INIT_NOT_INIT, PSM2_INIT_BAD_API_VERSION,
PSM2_NO_AFFINITY, PSM2_INTERNAL_ERR, PSM2_SHMEM_SEGMENT_ERR,
PSM2_OPT_READONLY, PSM2_TIMEOUT, PSM2_TOO_MANY_ENDPOINTS,
PSM2_IS_FINALIZED, PSM2_EP_WAS_CLOSED, PSM2_EP_NO_DEVICE,
PSM2_EP_UNIT_NOT_FOUND, PSM2_EP_DEVICE_FAILURE,
PSM2_EP_NO_PORTS_AVAIL, PSM2_EP_NO_NETWORK,
PSM2_EP_INVALID_UUID_KEY, PSM2_EPID_UNKNOWN,
PSM2_EPID_UNREACHABLE, PSM2_EPID_INVALID_NODE,
PSM2_EPID_INVALID_MTU, PSM2_EPID_INVALID_UUID_KEY,
PSM2_EPID_INVALID_VERSION, PSM2_EPID_INVALID_CONNECT,
PSM2_EPID_ALREADY_CONNECTED,PSM2_EPID_NETWORK_ERROR,
PSM2_MQ_INCOMPLETE, PSM2_MQ_TRUNCATION, PSM2_ERROR_LAST}

Table 2. Initialization and Maintenance Typedefs

Typedef Description

typedef enum psm2_error See also: psm2_error.

typedef psm2_error_token
*psm2_error_token_t

Error handling opaque token. A token is required for users that
register their own handlers and wish to defer further error
handling to PSM2.

typedef
psm2_error_t(*psm2_ep_errhandler_t)
(psm2_ep_t ep, const psm2_error_t error,
const char *error_string,
psm2_error_token_t token)

Error handling function. Users can handle errors explicitly
instead of relying on PSM2's own error handler. There is one
global error handler and error handlers that can be individually
set for each opened endpoint. By default, endpoints inherit the
global handler registered at the time of open.
Parameters:
• ep

Handle associated to the endpoint over which the error
occurred or NULL if the error is being handled by the global
error handler.

• error
PSM2 error identifier.

• error_string
A descriptive error string of maximum length
PSM2_ERRSTRING_MAXLEN.

• token
Opaque PSM2 token associated with the particular event
that generated the error. The token can be used to extract
the error string and can be passed to
psm2_error_defer to defer any remaining or
unhandled error handling to PSM2.

Postcondition: If the error handler returns, the error returned
is propagated to the caller.

Table 3. Error Type Enumerators (Sheet 1 of 2)

Enumerator Description

PSM2_OK Interface-wide "ok", guaranteed to be 0.

PSM2_OK_NO_PROGRESS No events progressed on psm2_poll (not fatal).

PSM2_PARAM_ERR Error in a function parameter.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
20 Order No.: H76473-1.0

PSM2_NO_MEMORY PSM2 ran out of memory.

PSM2_INIT_NOT_INIT PSM2 has not been initialized by psm2_init.

PSM2_INIT_BAD_API_VERSION API version passed in psm2_init is incompatible.

PSM2_NO_AFFINITY PSM2 Could not set affinity.

PSM2_INTERNAL_ERR PSM2 Unresolved internal error.

PSM2_SHMEM_SEGMENT_ERR PSM2 could not set up shared memory segment .

PSM2_OPT_READONLY PSM2 option is a read-only option.

PSM2_TIMEOUT PSM2 operation timed out.

PSM2_TOO_MANY_ENDPOINTS Too many endpoints.

PSM2_IS_FINALIZED PSM2 is finalized.

PSM2_EP_WAS_CLOSED Endpoint was closed.

PSM2_EP_NO_DEVICE PSM2 Could not find an Intel® Omni-Path Unit.

PSM2_EP_UNIT_NOT_FOUND User passed a bad unit number.

PSM2_EP_DEVICE_FAILURE Failure in initializing endpoint.

PSM2_EP_NO_PORTS_AVAIL No free ports could be obtained.

PSM2_EP_NO_NETWORK Could not detect network connectivity.

PSM2_EP_INVALID_UUID_KEY Invalid Unique job-wide UUID Key.

PSM2_EPID_UNKNOWN Endpoint connect status unknown (because of other
failures or if connect attempt timed out).

PSM2_EPID_UNREACHABLE Endpoint could not be reached by any PSM2
component.

PSM2_EPID_INVALID_NODE At least one of the connecting nodes was
incompatible in endianess.

PSM2_EPID_INVALID_MTU At least one of the connecting nodes provided an
invalid MTU.

PSM2_EPID_INVALID_UUID_KEY At least one of the connecting nodes provided a bad
key.

PSM2_EPID_INVALID_VERSION At least one of the connecting nodes is running an
incompatible PSM2 protocol version.

PSM2_EPID_INVALID_CONNECT At least one node provided garbled information.

PSM2_EPID_ALREADY_CONNECTED EPID was already connected.

PSM2_EPID_NETWORK_ERROR EPID is duplicated, network connectivity problem.

PSM2_MQ_INCOMPLETE MQ Non-blocking request is incomplete.

PSM2_MQ_TRUNCATION MQ Message has been truncated at the receiver.

PSM2_ERROR_LAST Reserved Value, indicates highest ENUM value for
psm2_error.

Table 3. Error Type Enumerators (Sheet 2 of 2)

Enumerator Description

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 21

Intel® PSM2 Component Functional Documentation

4.1.5 Functions

4.1.5.1 psm2_init

Syntax:

psm2_error_t psm2_init (int *api_verno_major, int
*api_verno_minor)

Call to initialize the PSM2 library for a desired API revision number.

Parameters:

api_verno_major
As input, a pointer to an integer that holds PSM2_VERNO_MAJOR. As output, the
pointer is updated with the major revision number of the loaded library.

api_verno_minor
As input, a pointer to an integer that holds PSM2_VERNO_MINOR. As output, the
pointer is updated with the minor revision number of the loaded library.

Precondition:

You have not called any other PSM2 library call except
psm2_error_register_handler to register a global error handler.

Warning:

PSM2 initialization is a precondition for all functions used in the PSM2 library.

Returns:

PSM2_OK
The PSM2 interface could be opened and the desired API revision can be provided.

PSM2_INIT_BAD_API_VERSION
The PSM2 library is not compatible with the desired API version.

Table 4. Initialization and Maintenance Functions

Function Description

psm2_init (int *api_verno_major, int
*api_verno_minor)

Initialize PSM2 interface.
For details, see: Section 4.1.5.1.

psm2_finalize (void)
Finalize PSM2 interface.
For details, see: Section 4.1.5.2.

psm2_error_register_handler (psm2_ep_t
ep, const psm2_ep_errhandler_t
errhandler)

PSM2 error handler registration.
For details, see: Section 4.1.5.3.

psm2_error_defer (psm2_error_token_t
err_token)

PSM2 deferred error handler.
For details, see: Section 4.1.5.4.

psm2_error_get_string (psm2_error_t
error)

Get generic error string from error.
For details, see: Section 4.1.5.5.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
22 Order No.: H76473-1.0

Example:

// In this example, we want to handle our own errors before doing init,
// since we don't want a fatal error if Intel® Omni-Path is not found.
// Note that @ref psm2_error_register_handler
// (and @ref psm2_uuid_generate)
// are the only functions that can be called before @ref psm2_init

int try_to_initialize_psm() {
int verno_major = PSM2_VERNO_MAJOR;
int verno_minor = PSM2_VERNO_MINOR;

int err = psm2_error_register_handler(NULL, //Global handler
PSM2_ERRHANDLER_NO_HANDLER);//return errors

if (err) {
fprintf(stderr, "Couldn't register global handler: %s\n",

psm2_error_get_string(err));
return -1;
}

err = psm2_init(&verno_major, &verno_minor);
if (err || verno_major > PSM2_VERNO_MAJOR) {

if (err)
fprintf(stderr, "PSM2 initialization failure: %s\n",

psm2_error_get_string(err));
else

fprintf(stderr, "PSM2 loaded an unexpected/unsupported "
"version (%d.%d)\n", verno_major, verno_minor);

return -1;
}

// We were able to initialize PSM2 but defer all further error
// handling since most of the errors beyond this point are fatal.

int err = psm2_error_register_handler(NULL, // Global handler
PSM2_ERRHANDLER_PSM_HANDLER); //

if (err) {
fprintf(stderr, "Couldn't register global errhandler: %s\n",

psm2_error_get_string(err));
return -1;

}
return 1;

}

4.1.5.2 psm2_finalize

Syntax:

psm2_error_t psm2_finalize (void)

Finalize PSM2 interface. Single call to finalize PSM2 and close all unclosed endpoints.

Postcondition:

You guarantee not to make any further PSM2 calls, including psm2_init.

Returns:

PSM2_OK
Always returns PSM2_OK.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 23

Intel® PSM2 Component Functional Documentation

4.1.5.3 psm2_error_register_handler

Syntax:

psm2_error_t psm2_error_register_handler (psm2_ep_t ep, const
psm2_ep_errhandler_t errhandler)

PSM2 error handler registration. Function to register error handlers on a global basis
and on a per-endpoint basis. PSM2_ERRHANDLER_PSM_HANDLER and
PSM2_ERRHANDLER_NO_HANDLER are special pre-defined handlers to respectively
enable use of the default PSM2-internal handler or the no-handler that disables
registered error handling and returns all errors to the caller (both are documented in
Section 2.6, “PSM2 Error Handling” on page 9).

Parameters:

ep
Handle of the endpoint over which the error handler should be registered. With ep
set to NULL, the behavior of the global error handler can be controlled.

errhandler
Handler to register. Can be a user-specific error handling function or
PSM2_ERRHANDLER_PSM_HANDLER or PSM2_ERRHANDLER_NO_HANDLER.

Remarks:

When ep is set to NULL, this is the only function that can be called before psm2_init.

4.1.5.4 psm2_error_defer

Syntax:

psm2_error_t psm2_error_defer (psm2_error_token_t err_token)

PSM2 deferred error handler.

Function to handle fatal PSM2 errors if no error handler is installed or if you wish to
defer further error handling to PSM2. Depending on the type of error, PSM2 may or may
not return from the function call.

Parameters:

err_token
Error token initially passed to error handler.

Precondition:

The function is called because PSM2 is designated to handle an error case.

Postcondition:

The function may or may not return depending on the error.

4.1.5.5 psm2_error_get_string

Syntax:

const char* psm2_error_get_string (psm2_error_t error)

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
24 Order No.: H76473-1.0

Get generic error string from error. Function to return the default error string
associated to a PSM2 error. While a more detailed and precise error string is usually
available within error handlers, this function is available to obtain an error string out of
an error handler context or when a no-op error handler is registered.

Parameters:

error
PSM2 error.

4.2 PSM2 Device Endpoint Management

4.2.1 Data Structures

struct psm2_ep_open_opts

Endpoint Open Options. These options are available for opening a PSM2 endpoint. Each
is individually documented. Setting each option to -1 or passing NULL as the options
parameter in psm2_ep_open instructs PSM2 to use implementation-defined defaults.

Each option is documented in psm2_ep_open.

Data Fields:

4.2.2 Defines

int64_t timeout Timeout in nanoseconds to open device.

int unit Intel® Omni-Path Unit ID to open on.

int affinity How PSM2 should set affinity.

int shm_mbytes Megabytes used for intra-node communication.

int sendbufs_num Preallocated send buffers.

uint64_t network_pkey Network Protection Key (v1.01).

Table 5. Endpoint Defines

Define Description

#define PSM2_EP_OPEN_AFFINITY_SKIP Disable setting affinity.

#define PSM2_EP_OPEN_AFFINITY_SET Enable setting affinity unless already set.

#define PSM2_EP_OPEN_AFFINITY_FORCE Enable setting affinity regardless of current affinity setting.

#define PSM2_EP_OPEN_PKEY_DEFAULT Default protection key.

#define PSM2_EP_CLOSE_GRACEFUL Graceful close mode in psm2_ep_close.

#define PSM2_EP_CLOSE_FORCE Forceful close mode in psm2_ep_close.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 25

Intel® PSM2 Component Functional Documentation

4.2.3 Typedefs

4.2.4 Functions

Table 6. Endpoint Typedefs

Typedef Description

typedef psm2_ep *psm2_ep_t

Local endpoint handle (opaque). Handle is returned when a
new local endpoint is created. The handle is a local handle to
be used in all communication functions and is not intended to
globally identify the opened endpoint in any way.
All open endpoint handles can be globally identified using the
endpoint id integral type (psm2_epid_t) and all communication
must use an endpoint address (psm2_epaddr_t) that can be
obtained by connecting a local endpoint to one or more
endpoint identifiers.

typedef uint64_t psm2_epid_t

Endpoint ID. Integral type of size 8 bytes that can be used to
globally identify a successfully opened endpoint. Although the
contents of the endpoint id integral type remains opaque,
unique network ID and Intel® Omni-Path port number can be
extracted using psm2_epid_nid and psm2_epid_port.

typedef psm2_epaddr *psm2_epaddr_t

Endpoint Address (opaque). Remote endpoint addresses are
created when you bind an endpoint ID to a particular endpoint
handle using psm2_ep_connect. A given endpoint address is
only guaranteed to be valid over a single endpoint.

typedef uint8_t psm2_uuid_t[16]

PSM2 Unique UID. PSM2 type equivalent to the DCE-1 uuid_t,
used to uniquely identify an endpoint within a particular job.
Since PSM2 does not participate in job allocation and
management, you must generate a unique ID to associate
endpoints to a particular parallel or collective job.
See also: psm2_uuid_generate.

Table 7. Endpoint Functions (Sheet 1 of 2)

Function Description

psm2_epid_nid (psm2_epid_t epid) Get Endpoint identifier's Unique Network ID.

psm2_epid_port (psm2_epid_t epid) Get Endpoint identifier's Intel® Omni-Path port.

psm2_map_nid_hostname(int num, const
uint64_t *nids, const char **hostnames)

Provide a mapping from network ID (LID) to hostnames.
For details, see: Section 4.2.4.1.

psm2_ep_num_devunits (uint32_t
*num_units)

List the number of available Intel® Omni-Path units.
For details, see: Section 4.2.4.2.

psm2_uuid_generate (psm2_uuid_t uuid_out)
Utility to generate UUIDs for psm2_ep_open.
For details, see: Section 4.2.4.3.

psm2_ep_open_opts_get_defaults (struct
psm2_ep_open_opts *opts);

Endpoint open default options.
For details, see: Section 4.2.4.4.

psm2_ep_open (const psm2_uuid_t
unique_job_key, const struct
psm2_ep_open_opts *opts, psm2_ep_t *ep,
psm2_epid_t *epid)

Intel® Omni-Path endpoint creation.
For details, see: Section 4.2.4.5.

psm2_ep_epid_share_memory (psm2_ep_t ep,
psm2_epid_t epid, int *result)

Endpoint shared memory query.
For details, see: Section 4.2.4.6.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
26 Order No.: H76473-1.0

4.2.4.1 psm2_map_nid_hostname

Syntax:

psm2_error_t psm2_map_nid_hostname(int num, const uint64_t *nids,
const char **hostnames)

Provide a mapping from Network ID (LID) to hostnames.

Since PSM2 does not assume or rely on the availability of an external network ID-to-
hostname mapping service, users can provide one or more of these mappings. The
psm2_map_nid_hostname function allows a list of network ids to be associated with
hostnames.

This function is not mandatory for correct operation but may allow PSM2 to provide
better diagnostics when remote endpoints are unavailable and can otherwise only be
identified by their Network ID.

Parameters:

num
Number elements in nid and hostnames arrays.

nids
User-provided array of network IDs (that is, Intel® Omni-Path LIDs), should be
obtained by calling psm2_epid_nid on each epid.

hostnames
User-provided array of hostnames (array of NULL-terminated strings) where each
hostname index maps to the provided nid hostname.

psm2_ep_close (psm2_ep_t ep, int mode,
int64_t timeout)

Close endpoint.
For details, see: Section 4.2.4.7.

psm2_ep_connect (psm2_ep_t ep, int
num_of_epid, const psm2_epid_t
*array_of_epid, const int
*array_of_epid_mask, psm2_error_t
*array_of_errors, psm2_epaddr_t
*array_of_epaddr, int64_t timeout)

Connect one or more remote endpoints to a local endpoint.
For details, see: Section 4.2.4.8.

psm2_ep_disconnect (psm2_ep_t ep, int
num_of_epaddr, const psm2_epaddr_t
*array_of_epaddr, const int
*array_of_epaddr_mask, psm2_error_t
*array_of_errors, int64_t timeout)

Disconnect one or more remote endpoints from a local
endpoint.
For details, see: Section 4.2.4.9.

psm2_poll (psm2_ep_t ep)
Ensure endpoint communication progress.
For details, see: Section 4.2.4.10.

psm2_epaddr_setlabel (psm2_epaddr_t
epaddr, const char *epaddr_label_string)

Set a user-determined ep address label.
For details, see: Section 4.2.4.11.

Table 7. Endpoint Functions (Sheet 2 of 2)

Function Description

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 27

Intel® PSM2 Component Functional Documentation

Warning:

Duplicate nids may be provided in the input nids array, only the first corresponding
hostname is remembered.

Precondition:

You may or may not have already provided a hostname mappings.

Postcondition:

You may free any dynamically allocated memory passed to the function.

4.2.4.2 psm2_ep_num_devunits

Syntax:

psm2_error_t psm2_ep_num_devunits (uint32_t *num_units)

List the number of available Intel® Omni-Path units. Function used to determine the
amount of locally available Intel® Omni-Path units. For N units, valid unit numbers in
psm2_ep_open are 0 to N-1.

Returns:

PSM2_OK
Unless you have not called psm2_init.

4.2.4.3 psm2_uuid_generate

Syntax:

void psm2_uuid_generate (psm2_uuid_t uuid_out)

Utility to generate UUIDs for psm2_ep_open. Utility to generate UUIDs for
psm2_ep_open. This function is available as a utility for generating unique job-wide
ids. See discussion in psm2_ep_open for further information.

Remarks:

This function does not require PSM2 to be initialized.

4.2.4.4 psm2_ep_open_opts_get_defaults

Syntax:

psm2_error_t psm2_ep_open_opts_get_defaults (struct
psm2_ep_open_opts *opts);

Function used to initialize the set of endpoint options to their default values for use in
psm2_ep_open.

Parameters:

opts
Endpoint Open options.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
28 Order No.: H76473-1.0

Warning:

For portable operation, you should always call this function prior to calling
psm2_ep_open.

Returns:

PSM2_OK
If result could be updated.

PSM2_INIT_NOT_INIT
If PSM2 has not been initialized.

4.2.4.5 psm2_ep_open

Syntax:

psm2_error_t psm2_ep_open (const psm2_uuid_t unique_job_key, const
struct psm2_ep_open_opts *opts, psm2_ep_t *ep, psm2_epid_t *epid)

Endpoint creation.

Function used to create a new local communication endpoint on an Intel® Omni-Path
HFI. The returned endpoint handle is required in all PSM2 communication operations,
as PSM2 can manage communication over multiple endpoints. An opened endpoint has
no global context until you connect the endpoint to other global endpoints by way of
psm2_ep_connect. All local endpoint handles are globally identified by endpoint IDs
(psm2_epid_t) which are also returned when an endpoint is opened. It is assumed
that you can provide an out-of-band mechanism to distribute the endpoint IDs in order
to establish connections between endpoints (see psm2_ep_connect for more
information).

Parameters:

unique_job_key
Endpoint key, to uniquely identify the endpoint’s job. You must ensure that the key
is globally unique over a period long enough to prevent duplicate keys over the
same set of endpoints (see additional details in the following paragraphs).

opts
Open options of type psm2_ep_open_opts (see
psm2_ep_open_opts_get_defaults). Note that this parameter can also be
NULL. Refer to the example in Section 4.1.5.1, “psm2_init” on page 21.

ep
User-supplied storage to return a pointer to the newly created endpoint. The
returned pointer of type psm2_ep_t is a local handle and cannot be used to
globally identify the endpoint.

epid
User-supplied storage to return the endpoint ID associated to the newly created
local endpoint returned in the ep handle. The endpoint ID is an integral type
suitable for uniquely identifying the local endpoint.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 29

Intel® PSM2 Component Functional Documentation

PSM2 does not internally verify the consistency of the uuid, you must ensure that the
uid is unique enough not to collide with other currently-running jobs. Use one of the
following mechanisms to obtain a uuid:
1. Use the supplied psm2_uuid_generate utility.
2. Use an OS or library-specific uuid generation utility, that complies with OSF DCE

1.1, such as uuid_generate on Linux or uuid_create on FreeBSD.
See: http://www.opengroup.org/onlinepubs/009629399/uuid_create.htm

3. Manually pack a 16-byte string using a utility such as /dev/random or other source
with enough entropy and proper seeding to prevent two nodes from generating the
same uuid_t.

The following options are relevant when opening an endpoint:
• timeout establishes the amount of nanoseconds to wait before failing to open a

port (with -1, defaults to 15 secs).
• unit sets the unit number to use to open a port (with -1, PSM2 determines the

best unit to open the port). If HFI_UNIT is set in the environment, this setting is
ignored.

• affinity enables or disables PSM2 setting processor affinity. The option can be
controlled to either disable (PSM2_EP_OPEN_AFFINITY_SKIP) or enable the
affinity setting only if it is already unset (PSM2_EP_OPEN_AFFINITY_SET) or
regardless of affinity begin set or not (PSM2_EP_OPEN_AFFINITY_FORCE). If
HFI_NO_CPUAFFINITY is set in the environment, this setting is ignored.

• shm_mbytes sets a maximum amount of megabytes that can be allocated to each
local endpoint ID connected through this endpoint (with -1, defaults to 10 MB).

• sendbufs_num sets the number of send buffers that can be pre-allocated for
communication (with -1, defaults to 512 buffers of MTU size).

• network_pkey sets the protection key to employ for point-to-point PSM2
communication. Unless a specific value is used, this parameter should be set to
PSM2_EP_OPEN_PKEY_DEFAULT.

Warning:
Currently, PSM2 limits you to calling psm2_ep_open only once per process;
subsequent calls fail. Multiple endpoints per process may be enabled in a future
release.

Example:

// In order to open an endpoint and participate in a job, each endpoint has

// to be distributed a unique 16-byte UUID key from an out-of-band source.

// Presumably this can come from the parallel spawning utility either

// indirectly through an implementors own spawning interface or as in this

// example, the UUID is set as a string in an environment variable

// propagated to all endpoints in the job.

int try_to_open_psm2_endpoint(psm2_ep_t *ep, // output endpoint handle

psm2_epid_t *epid, // output endpoint identifier

int unit) // unit of our choice

{

psm2_ep_open_opts epopts;

psm2_uuid_t job_uuid;

char *c;

// Let PSM2 assign its default values to the endpoint options.
psm2_ep_open_opts_get_defaults(&epopts);

http://www.opengroup.org/onlinepubs/009629399/uuid_create.htm

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
30 Order No.: H76473-1.0

// We want a stricter timeout and a specific unit

epopts.timeout = 15*1e9; // 15 second timeout

epopts.unit = unit; // We want a specific unit, -1 would let PSM2

// choose the unit for us.

// We’ve already set affinity, don’t let PSM2 do so if it wants to.

if (epopts.affinity == PSM2_EP_OPEN_AFFINITY_SET)

epopts.affinity = PSM2_EP_OPEN_AFFINITY_SKIP;

// ENDPOINT_UUID is set to the same value in the environment of all the

// processes that wish to communicate over PSM2 and was generated by

// the process spawning utility.

c = getenv("ENDPOINT_UUID");

if (c && *c)

implementor_string_to_16byte_packing(c, job_uuid);

else {

fprintf(stderr, "Can't find UUID for endpoint\n);

return -1;

}

// Assume we don't want to handle errors here.

psm2_ep_open(job_uuid, &epopts, ep, epid);

return 1;

}

4.2.4.6 psm2_ep_epid_share_memory

Syntax:

psm2_error_t psm2_ep_epid_share_memory (psm2_ep_t ep, psm2_epid_t
epid, int *result)

Endpoint shared memory query. Function used to determine if a remote endpoint
shares memory with a currently opened local endpiont.

Parameters:

ep
Endpoint handle.

epid
Endpoint ID.

result
Is non-zero if the remote endpoint shares memory with the local endpoint ep, or
zero otherwise.

Returns:

PSM2_OK
If result could be updated.

PSM2_EPID_UNKNOWN
If the epid is not recognized.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 31

Intel® PSM2 Component Functional Documentation

4.2.4.7 psm2_ep_close

Syntax:

psm2_error_t psm2_ep_close (psm2_ep_t ep, int mode, int64_t
timeout)

Close endpoint.

Parameters:

ep
Endpoint handle.

mode
One of PSM2_EP_CLOSE_GRACEFUL or PSM2_EP_CLOSE_FORCE.

timeout
How long to wait in nanoseconds if mode is PSM2_EP_CLOSE_GRACEFUL, 0 waits
forever. If mode is PSM2_EP_CLOSE_FORCE, this parameter is ignored.

The following errors are returned, others are handled by the per-endpoint error
handler:

Returns:

PSM2_OK
Endpoint was successfully closed without force or successfully closed with force
within the supplied timeout.

PSM2_EP_CLOSE_TIMEOUT
Endpoint could not be successfully closed within timeout.

4.2.4.8 psm2_ep_connect

Syntax:

psm2_error_t psm2_ep_connect (psm2_ep_t ep, int num_of_epid, const
psm2_epid_t *array_of_epid, const int *array_of_epid_mask,
psm2_error_t *array_of_errors, psm2_epaddr_t *array_of_epaddr,
int64_t timeout)

Connect one or more remote endpoints to a local endpoint. Function to non-collectively
establish a connection to a set of endpoint IDs and translate endpoint IDs into endpoint
addresses. Establishing a remote connection with a set of remote endpoint IDs does
not imply a collective operation and you are free to connect unequal sets on each
process. Similarly, a given endpoint address does not imply that a pairwise
communication context exists between the local endpoint and remote endpoint.

Parameters:

ep
Endpoint handle.

num_of_epid
The number of endpoints to connect to, which also establishes the amount of
elements contained in all of the function's array-based parameters.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
32 Order No.: H76473-1.0

array_of_epid
User-allocated array that contains num_of_epid valid endpoint identifiers. Each
endpoint id (or epid) has been obtained through an out-of-band mechanism and
each endpoint must have been opened with the same uuid key.

array_of_epid_mask
User-allocated array that contains num_of_epid integers. This array of masks
allows users to select which of the epids in array_of_epid should be connected.
If the integer at index i is zero, PSM2 does not attempt to connect to the epid at
index i in array_of_epid. If this parameter is NULL, PSM2 tries to connect to
each epid.

array_of_errors
User-allocated array of at least num_of_epid elements. If the function does not
return PSM2_OK, this array can be consulted for each endpoint not masked off by
array_of_epid_mask to know why the endpoint could not be connected.
Endpoints that could not be connected because of an unrelated failure are marked
as PSM2_EPID_UNKNOWN. If the function returns PSM2_OK, the errors for all
endpoints also contain PSM2_OK.

array_of_epaddr
User-allocated array of at least num_of_epid elements of type psm2_epaddr_t.
Each successfully connected endpoint is updated with an endpoint address handle
that corresponds to the endpoint id at the same index in array_of_epid. Handles
are only updated if the endpoint could be connected and if its error in
array_of_errors is PSM2_OK.

timeout
Timeout in nanoseconds after which connection attempts are abandoned. Setting
this value to 0 disables timeout and waits until all endpoints have been successfully
connected or until an error is detected.

Precondition:

You have opened a local endpoint and obtained a list of endpoint IDs to connect to a
given endpoint handle using an out-of-band mechanism not provided by PSM2.

Postcondition:

If the connect is successful, array_of_epaddr is updated with valid endpoint
addresses.

If unsuccessful, you can query the return status of each individual remote endpoint in
array_of_errors.

You can call into psm2_ep_connect many times with the same endpoint ID and the
function is guaranteed to return the same output parameters.

PSM2 does not keep any reference to the arrays passed into the function and the caller
is free to deallocate them.

The error value with the highest importance is returned by the function if some portion
of the communication failed. Users should always refer to individual errors in
array_of_errors whenever the function cannot return PSM2_OK.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 33

Intel® PSM2 Component Functional Documentation

Returns:

PSM2_OK
The entire set of endpoint IDs were successfully connected and endpoint addresses
are available for all endpoint IDs.

Example:
int connect_endpoints(psm2_ep_t ep, int numep, const psm2_epid_t

*array_of_epid, psm2_epaddr_t **array_of_epaddr_out)

{

psm2_error_t *errors = (psm2_error_t *)

calloc(numep, sizeof(psm2_error_t));

if (errors == NULL)

return -1;

psm2_epaddr_t *all_epaddrs =

(psm2_epaddr_t *) calloc(numep, sizeof(psm2_epaddr_t));

if (all_epaddrs == NULL)

return -1;

psm2_ep_connect(ep, numep, array_of_epid,

NULL, // We want to connect all epids, no mask needed
errors,

all_epaddrs,

30*e9); // 30 second timeout, <1 ns is forever

*array_of_epaddr_out = all_epaddrs;

free(errors);

return 1;

}

4.2.4.9 psm2_ep_disconnect

Syntax:

psm2_error_t psm2_ep_disconnect (psm2_ep_t ep, int num_of_epaddr,
const psm2_epaddr_t *array_of_epaddr, const int
*array_of_epaddr_mask, psm2_error_t *array_of_errors, int64_t
timeout)

Disconnect one or more remote endpoints from a local endpoint. Function to non-
collectively disconnect a connection to a set of endpoint addresses and free the
endpoint addresses. After disconnecting, the application cannot send messages to the
remote processes again and PSM2 is restored back to the state before calling
psm2_ep_connect. The application must call psm2_ep_connect to establish the
connections again.

Parameters:

ep
Endpoint handle.

num_of_epaddr
The amount of endpoint addresses to disconnect from, which also indicates the
amount of elements contained in all of the function’s array-based parameters.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
34 Order No.: H76473-1.0

array_of_epaddr
User-allocated array that contains num_of_epaddr valid endpoint addresses. Each
endpoint address (or epaddr) has been obtained through a previous
psm2_ep_connect call.

array_of_epaddr_mask
User-allocated array that contains num_of_epaddr integers. This array of masks
allows users to select which of the epaddresses in array_of_epaddr should be
disconnected. If the integer at index i is zero, PSM2 does not attempt to
disconnect to the epaddr at index i in array_of_epaddr. If this parameter is
NULL, PSM2 tries to disconnect all epaddr in array_of_epaddr.

array_of_errors
User-allocated array of at least num_of_epaddr elements. If the function does not
return PSM2_OK, this array can be consulted for each endpoint address not masked
off by array_of_epaddr_mask to know why the endpoint could not be
disconnected. Any endpoint address that could not be disconnected because of an
unrelated failure is marked as PSM2_EPID_UNKNOWN. If the function returns
PSM2_OK, the errors for all endpoint addresses also contain PSM2_OK.

timeout
Timeout in nanoseconds after which disconnection attempts are abandoned.
Setting this value to 0 disables timeout and waits until all endpoints have been
successfully disconnected or until an error is detected.

Precondition:

You have established the connections with previous psm2_ep_connect calls.

Postcondition:

If the disconnect is successful, the corresponding epaddr in array_of_epaddr is reset
to NULL pointer.

If unsuccessful, you can query the return status of each individual remote endpoint in
array_of_errors.

PSM2 does not keep any reference to the arrays passed into the function and the caller
is free to deallocate them.

The error value with the highest importance is returned by the function if some portion
of the communication failed. Refer to individual errors in array_of_errors whenever
the function cannot return PSM2_OK.

Returns:

PSM2_OK
The entire set of endpoint IDs were successfully disconnected and endpoint
addresses are freed by PSM2.

Example:
int disconnect_endpoints(psm2_ep_t ep, int num_epaddr, const psm2_epaddr_t

*array_of_epaddr)

{

psm2_error_t *errors = (psm2_error_t *)

calloc(num_epaddr, sizeof(psm2_error_t));

if (errors == NULL)

return -1;

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 35

Intel® PSM2 Component Functional Documentation

psm2_ep_disconnect(ep, num_epaddr, array_of_epaddr,

NULL, // We want to disconnect all epaddrs, no mask needed,

errors,

30*e9); // 30 second timeout, <1 ns is forever

free(errors);

return 1;

}

4.2.4.10 psm2_poll

Syntax:

psm2_error_t psm2_poll (psm2_ep_t ep)

Ensure endpoint communication progress.

Function to ensure progress for all PSM2 components instantiated on an endpoint
(currently, this only includes the MQ component). The function never blocks and is
typically required in two cases:

• Allowing all PSM2 components instantiated over a given endpoint to make
communication progress. Refer to “MQ Progress Requirements” on page 17 for a
detailed discussion on MQ-level progress issues.

• Cases where users write their own synchronization primitives that depend on
remote communication, such as spinning on a memory location whose new value
depends on ongoing communication.

The poll function does not block, but you can rely on the PSM2_OK_NO_PROGRESS
return value to control polling behavior in terms of frequency (poll until an event
happens) or execution environment (poll for a while but yield to other threads of CPUs
are oversubscribed).

Returns:

PSM2_OK
Some communication events were progressed.

PSM2_OK_NO_PROGRESS
Polling did not yield any communication progress.

4.2.4.11 psm2_epaddr_setlabel

Syntax:

void psm2_epaddr_setlabel (psm2_epaddr_t epaddr, const char
*epaddr_label_string)

Set a user-determined ep address label.

Parameters:

epaddr
Endpoint address, obtained from psm2_ep_connect.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
36 Order No.: H76473-1.0

epaddr_label_string
User-allocated string to print when identifying endpoint in error handling or other
verbose printing. You must allocate the NULL-terminated string since PSM2 only
keeps a pointer to the label. If you do not explicitly set a label for each endpoint,
endpoints identify themselves as hostname:port.

4.3 PSM2 Matched Queues

4.3.1 Modules

PSM2 Matched Queue Options.

4.3.2 Data Structures

4.3.2.1 psm2_mq_status

struct psm2_mq_status

MQ Non-blocking operation status structure

Message completion status for asynchronous communication operations. For wait and
test functions, MQ fills in the structure upon completion. Upon completion, receive
requests fill in every field of the status structure while send requests only return a valid
error_code and context pointer.

Data Fields:

Table 8. Matched Queues Data Structures

Data Structure Description

psm2_mq_status
MQ Non-blocking operation status structure.
For details, see: Section 4.3.2.1.

psm2_mq_stats
MQ statistics structure.
For details, see: Section 4.3.2.2.

psm2_tag_t
MQ 96-bit tag structure
For details, see: Section 4.3.2.3.

psm2_mq_status2_t
MQ status structure for 96-bit (psm2_tag_t) non-blocking
operations.
For details, see: Section 4.3.2.4.

Field Description

uint64_t msg_tag Sender's original message tag (receive reqs only).

uint32_t msg_length Sender's original message length (receive reqs only).

uint32_t nbytes Actual number of bytes transferred (receive reqs
only).

psm2_error_t error_code MQ error code for communication operation.

int32_t msg_source Sender’s registered source ID (receive reqs only).

void *context User-associated context for send or receive.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 37

Intel® PSM2 Component Functional Documentation

4.3.2.2 MQ Statistics Structure

struct psm2_mq_stats

MQ statistics structure

Data Fields:

4.3.2.3 psm2_tag_t

struct psm2_tag_t

MQ 96-bit tag structure

Data Fields:

4.3.2.4 psm2_mq_status2

struct psm2_mq_status2

MQ Non-blocking operation status structure

Message completion status for asynchronous communication operations. For wait and
test functions, MQ fills in the structure upon completion. Upon completion, receive
requests fill in every field of the status structure while send requests only return a valid
error_code and context pointer.

Field Description

uint64_t rx_user_bytes Bytes received into a matched user buffer.

uint64_t rx_user_num Messages received into a matched user buffer.

uint64_t rx_sys_bytes Bytes received into an unmatched system buffer.

uint64_t rx_sys_num Messages received into an unmatched system buffer.

uint64_t tx_num Total Messages transmitted (shm and hfi).

uint64_t tx_eager_num Messages transmitted eagerly.

uint64_t tx_eager_bytes Bytes transmitted eagerly.

uint64_t tx_rndv_num Messages transmitted using expected TID
mechanism.

uint64_t tx_rndv_bytes Bytes transmitted using expected TID mechanism.

uint64_t tx_shm_num Messages transmitted (shm only).

uint64_t rx_shm_num Messages received through shm.

uint64_t rx_sysbuf_num Number of system buffers allocated.

uint64_t rx_sysbuf_bytes Bytes allocated for system buffers

uint64_t _reserved[16] Internally reserved for future use.

Field Description

uint32_t tag[3] Message tag bits. The backwards-compatible 64-bit
component of the tag is stored in tag[0] and tag[1].

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
38 Order No.: H76473-1.0

Data Fields:

4.3.3 Defines

4.3.4 Typedefs

Field Description

psm2_epaddr_t msg_peer Remote peer's epaddr.

psm2_mq_tag_t msg_tag Sender's original message tag.

uint32_t msg_length Sender's original message length (receive reqs only).

uint32_t nbytes Actual number of bytes transfered (receive reqs
only).

psm2_error_t error_code MQ error code for communication operation.

void * context User-associated context for send or receive.

Table 9. Matched Queues Defines

Define Description

#define PSM2_MQ_ORDERMASK_NONE
Used to initialize MQ and disable all MQ message ordering
guarantees (this mask may prevent the use of MQ to maintain
matched message envelope delivery required in MPI).

#define PSM2_MQ_ORDERMASK_ALL Used to initialize MQ with no message ordering hints, which
forces MQ to maintain order over all messages.

#define PSM2_MQ_FLAG_SENDSYNC MQ Send Force synchronous send.

#define PSM2_MQ_REQINVALID MQ request completion value.

#define PSM2_MQ_NUM_STATS How many stats are currently used in psm2_mq_stats.

#define PSM2_MQ_ANY_ADDR psm2_epaddr_t that matches any epaddr in the MQ.

Table 10. Matched Queues Typedefs

Typedef Description

typedef psm2_mq *psm2_mq_t MQ handle (opaque). Handle returned when a new Matched
Queue is created (psm2_mq_init).

typedef struct psm2_mq_status
psm2_mq_status_t

MQ Non-blocking operation status for 64-bit tagged operations.
Message completion status for asynchronous communication
operations. For wait and test functions, MQ fills in the structure
upon completion. Other than error_code and context
guaranteed to be valid for send and recv operations, other
struct members are only defined for posted receives.

typedef struct psm2_mq_status2
psm2_mq_status_t

MQ Non-blocking operation status for 96-bit tagged operations.
Message completion status for asynchronous communication
operations. For wait and test functions, MQ fills in the structure
upon completion. Other than error_code and context
guaranteed to be valid for send and recv operations, other
struct members are only defined for posted receives.

typedef struct psm2_mq_stats
psm2_mq_stats_t

Statistics for messages send and received over a given MQ.

typedef psm2_mq_req *psm2_mq_req_t PSM2 Communication handle (opaque).

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 39

Intel® PSM2 Component Functional Documentation

4.3.5 Functions

Table 11. Matched Queue Functions (Sheet 1 of 2)

Function Description

psm2_mq_init (psm2_ep_t ep, uint64_t
tag_order_mask, const struct psm2_optkey
*opts, int numopts, psm2_mq_t *mq)

Initialize the MQ component for MQ communication.
For details, see: Section 4.3.5.1.

psm2_mq_finalize (psm2_mq_t mq)
Finalize (close) an MQ handle.
For details, see: Section 4.3.5.2.

psm2_mq_irecv (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, uint32_t flags,
void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection criteria.
For details, see: Section 4.3.5.3.

psm2_mq_irecv2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, uint32_t flags,
void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection criteria, it
only matches message from the specified src process.
Source matching is optional. Uses 96-bit psm2_mq_tag_t
instead of 64-bit tag.
For details, see: Section 4.3.5.4.

psm2_mq_send (psm2_mq_t mq, psm2_epaddr_t
dest, uint32_t flags, uint64_t stag,
const void *buf, uint32_t len)

Send a blocking MQ message.
For details, see: Section 4.3.5.5.

psm2_mq_send2 (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
psm2_mq_tag_t *stag, const void *buf,
uint32_t len)

Send a blocking MQ message.
For details, see: Section 4.3.5.6.

psm2_mq_isend (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
uint64_t stag, const void *buf, uint32_t
len, void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message.
For details, see: Section 4.3.5.7.

psm2_mq_isend2 (psm2_mq_t mq,
psm2_epaddr_t dest, uint32_t flags,
psm2_mq_tag_t *stag, const void *buf,
uint32_t len, void *context,
psm2_mq_req_t *req)

Send a non-blocking MQ message.
For details, see: Section 4.3.5.8.

psm2_mq_iprobe (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, psm2_mq_status_t
*status)

Try to probe if a message is received to match tag selection
criteria.
For details, see: Section 4.3.5.9.

psm2_mq_iprobe2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, psm2_mq_status2_t
*status)

Try to probe if a message from the specified src process is
received to match tag selection criteria.
Source matching is optional. Uses 96-bit psm2_mq_tag_t
instead of 64-bit tag.
For details, see: Section 4.3.5.10.

psm2_mq_improbe (psm2_mq_t mq, uint64_t
rtag, uint64_t rtagsel, psm2_mq_req_t
*req, psm2_mq_status_t *status)

Probe for a matching message, and if found, remove the
message from the MQ; the message can be retrieved through
the req.
For details, see: Section 4.3.5.11.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
40 Order No.: H76473-1.0

4.3.5.1 psm2_mq_init

Syntax:

psm2_error_t psm2_mq_init (psm2_ep_t ep, uint64_t tag_order_mask,
const struct psm2_optkey *opts, int numopts, psm2_mq_t *mq)

Initialize the MQ component for MQ communication. This function provides the Matched
Queue handle necessary to perform all Matched Queue communication operations.

Parameters:

ep
Endpoint over which to initialize Matched Queue.

tag_order_mask
Order mask hint to let MQ know what bits of the send tag are required to maintain
MQ message order. In MPI parlance, this mask sets the bits that store the context
(or communicator ID). You can choose to pass PSM2_MQ_ORDERMASK_NONE or
PSM2_MQ_ORDERMASK_ALL to tell MQ to respectively provide no ordering

psm2_mq_improbe2 (psm2_mq_t mq,
psm2_epaddr_t src, psm2_mq_tag_t *rtag,
psm2_mq_tag_t *rtagsel, psm2_mq_req_t
*req, psm2_mq_status2_t *status)

Probe for a matching message, and if found, remove the
message from the MQ; the message can be retrieved through
the req.
For details, see: Section 4.3.5.12.

psm2_mq_imrecv(psm2_mq_t mq, uintew_t
flags, void *buf, uint32_t len, void
*context, psm2_mq_req_t *req)

Retrieves both 64-bit and 96-bit tagged messages, through the
psm2_mq_req_t, matched by a previous call to
psm2_mq_improbe() or psm2_mq_improbe2().
For details, see: Section 4.3.5.13.

psm2_mq_ipeek (psm2_mq_t mq,
psm2_mq_req_t *req, psm2_mq_status_t
*status)

Query for non-blocking requests ready for completion.
For details, see: Section 4.3.5.14.

psm2_mq_ipeek2 (psm2_mq_t mq,
psm2_mq_req_t *req, psm2_mq_status2_t
*status)

Query for 96-bit psm2_mq_tag_t nonblocking requests ready
for completion.
For details, see: Section 4.3.5.15.

psm2_mq_wait (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Wait until a non-blocking request completes.
For details, see: Section 4.3.5.16.

psm2_mq_wait2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Wait until a 96-bit psm2_mq_tag_t non-blocking request
completes.
For details, see: Section 4.3.5.17.

psm2_mq_test (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Test if a non-blocking request is complete.
For details, see: Section 4.3.5.18.

psm2_mq_test2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Test if a 96-bit psm2_mq_tag_t non-blocking request
completes.
For details, see: Section 4.3.5.19.

psm2_mq_cancel (psm2_mq_req_t *req)
Cancel a preposted request.
For details, see: Section 4.3.5.20.

psm2_mq_get_stats (psm2_mq_t mq,
psm2_mq_stats_t *stats)

Retrieve statistics from an instantiated MQ.
For details, see: Section 4.3.5.21.

Table 11. Matched Queue Functions (Sheet 2 of 2)

Function Description

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 41

Intel® PSM2 Component Functional Documentation

guarantees or to provide ordering over all messages by ignoring the contexts of the
send tags.

opts
Set of options for Matched Queue.

numopts
Number of options passed.

mq
User-supplied storage to return the Matched Queue handle associated to the newly
created Matched Queue.

Remarks:

This function can be called many times to retrieve the MQ handle associated to an
endpoint, but options are only considered the first time the function is called.

Postcondition:

You obtain a handle to an instantiated Match Queue.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
A new Matched Queue has been instantiated across all the members of the group.

Example:
int try_open_endpoint_and_initialize_mq(

psm2_ep_t *ep, // endpoint handle

psm2_epid_t *epid, // unique endpoint ID

psm2_uuid_t job_uuid, // unique job uuid, for ep_open

psm2_mq_t *mq, // MQ handle initialized on endpoint 'ep'

uint64_t communicator_bits) // Where we store our communicator or

// context bits in the 64-bit tag.

{

// Simplifed open, see psm2_ep_open documentation for more info
psm2_ep_open(job_uuid,

NULL, // no options

ep, epid);

// We initialize a matched queue by telling PSM2 the bits that are

// order-significant in the tag. Point-to-point ordering is not

// maintained between senders where the communicator bits are not

// the same.

psm2_mq_init(ep,

communicator_bits,

NULL, // no other MQ options

0, // 0 options passed

mq); // newly initialized matched Queue

return 1;

}

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
42 Order No.: H76473-1.0

4.3.5.2 psm2_mq_finalize

Syntax:

psm2_error_t psm2_mq_finalize (psm2_mq_t mq)

Finalize (close) an MQ handle. The following error code is returned. Other errors are
handled by the PSM2 error handler (psm2_error_register_handler).

Return values:

PSM2_OK
A given Matched Queue has been freed and use of the future use of the handle
produces undefined results.

4.3.5.3 psm2_mq_irecv

Syntax:

psm2_error_t psm2_mq_irecv (psm2_mq_t mq, uint64_t rtag, uint64_t
rtagsel, uint32_t flags, void *buf, uint32_t len, void *context,
psm2_mq_req_t *req)

Post a receive to a Matched Queue with tag selection criteria. Function to receive a non-
blocking MQ message by providing a preposted buffer. For every MQ message received
on a particular MQ, the tag and tagsel parameters are used against the incoming
message's send tag as described in Section 3.1.1, “MQ Tag Matching” on page 14.

Parameters:

mq
Matched Queue handle.

rtag
Receive tag.

rtagsel
Receive tag selector.

flags
Receive flags (None currently supported).

buf
Receive buffer.

len
Receive buffer length.

context
User context pointer, available in psm2_mq_status_t upon completion.

req
PSM2 MQ Request handle created by the preposted receive, to be used for explicitly
controlling message receive completion.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 43

Intel® PSM2 Component Functional Documentation

Postcondition:

The supplied receive buffer is given to MQ to match against incoming messages unless
it is cancelled via psm2_mq_cancel before any match occurs.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The receive buffer has successfully been posted to the MQ.

4.3.5.4 psm2_mq_irecv2

Syntax:

psm2_error_t psm2_mq_irecv2 (psm2_mq_t mq, psm2_epaddr_t src,
psm2_mq_tag_t *rtag, psm2_mq_tag_t *rtagsel, uint32_t flags, void
*buf, uint32_t len, void *context, psm2_mq_req_t *req)

Post a receive to a Matched Queue with source and tag selection criteria. Function to
receive a nonblocking MQ message by providing a preposted buffer. Only for every MQ
message received from the specified source process on a particular MQ, the src, tag,
and tagsel parameters are used against the incoming message's send tag as
described in Section 3.1.1, “MQ Tag Matching” on page 14.

If argument src is NULL pointer, then every MQ message received from any process is
used to do the matching, which is equivalent to psm2_mq_irecv.

Parameters:

mq
Matched Queue handle.

src
Source EP address; PSM2_MQ_ANY_ADDR can allow a match on any sender.

rtag
Receive tag pointer.

rtagsel
Receive tag selector pointer.

flags
Receive flags (None currently supported).

buf
Receive buffer.

len
Receive buffer length.

context
User context pointer, available in psm2_mq_status2_t upon completion.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
44 Order No.: H76473-1.0

req
PSM2 MQ Request handle created by the preposted receive, to be used for explicitly
controlling message receive completion.

Postcondition:

The supplied receive buffer is given to MQ to match against incoming messages unless
it is cancelled via psm2_mq_cancel before any match occurs.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The receive buffer has successfully been posted to the MQ.

4.3.5.5 psm2_mq_send

Syntax:

psm2_error_t psm2_mq_send (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, uint64_t stag, const void *buf, uint32_t len)

Send a blocking MQ message. Function to send a blocking MQ message, whereby the
message is locally complete and the source data can be modified upon return.

Parameters:

mq
Matched Queue handle.

dest
Destination EP address.

flags
Message flags, currently:
PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it has
matched the send with a receive buffer.

stag
Message Send Tag.

buf
Source buffer pointer.

len
Length of message starting at buf.

Postcondition:

The source buffer is reusable and the send is locally complete.

Note: This send function has been implemented to best suit MPI_Send.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 45

Intel® PSM2 Component Functional Documentation

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The message has been successfully sent.

4.3.5.6 psm2_mq_send2

Syntax:

psm2_error_t psm2_mq_send2 (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, psm2_mq_tag_t *stag, const void *buf, uint32_t
len)

Send a blocking MQ message. Function to send a blocking MQ message, whereby the
message is locally complete and the source data can be modified upon return.

Parameters:

mq
Matched Queue handle.

dest
Destination EP address.

flags
Message flags, currently:
PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it has
matched the send with a receive buffer.

stag
Message Send Tag pointer.

buf
Source buffer pointer.

len
Length of message starting at buf.

Postcondition:

The source buffer is reusable and the send is locally complete.

Note: This send function has been implemented to best suit MPI_Send.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The message has been successfully sent.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
46 Order No.: H76473-1.0

4.3.5.7 psm2_mq_isend

Syntax:

psm2_error_t psm2_mq_isend (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, uint64_t stag, const void *buf, uint32_t len, void
*context, psm2_mq_req_t *req)

Send a non-blocking MQ message. Function to initiate the send of a non-blocking MQ
message. You must ensure that the source data remains unmodified until the send is
locally completed through a call such as psm2_mq_wait or psm2_mq_test.

Parameters:

mq
Matched Queue handle.

dest
Destination EP address.

flags
Message flags, currently:
PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it has
matched the send with a receive buffer.

stag
Message Send Tag.

buf
Source buffer pointer.

len
Length of message starting at buf.

context
Optional user-provided pointer available in psm2_mq_status_t when the send is
locally completed.

req
PSM2 MQ Request handle created by the non-blocking send, to be used for
explicitly controlling message completion.

Postcondition:

The source buffer is not reusable and the send is not locally complete until its request is
completed by either psm2_mq_test or psm2_mq_wait.

Note: This send function has been implemented to suit MPI_Isend.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 47

Intel® PSM2 Component Functional Documentation

Return values:

PSM2_OK
The message has been successfully initiated.

Example:

psm2_mq_req_t
non_blocking_send(const psm2_mq_t mq, psm2_epaddr_t dest_ep,

const void *buf, uint32_t len,
int context_id, int send_tag, const my_request_t *req)

{
psm2_mq_req_t req_mq;
// Set up our send tag, assume that "my_rank" is global and
// represents the rank of this process in the job
uint64_t tag = (((context_id & 0xffff) << 48) |

((my_rank & 0xffff) << 32) |
((send_tag & 0xffffffff)));

psm2_mq_isend(mq, dest_ep,
0, // no flags
tag,
buf,
len,
req, // this req is available in psm2_mq_status_t when one

// of the synchronization functions is called.
&req_mq);

return req_mq;
}

4.3.5.8 psm2_mq_isend2

Syntax:

psm2_error_t psm2_mq_isend2 (psm2_mq_t mq, psm2_epaddr_t dest,
uint32_t flags, psm2_mq_tag_t *stag, const void *buf, uint32_t
len, void *context, psm2_mq_req_t *req)

Send a non-blocking MQ message. Function to initiate the send of a non-blocking MQ
message. You must ensure that the source data remains unmodified until the send is
locally completed through a call such as psm2_mq_wait2 or psm2_mq_test2.

Parameters:

mq
Matched Queue handle.

dest
Destination EP address.

flags
Message flags, currently:
PSM2_MQ_FLAG_SENDSYNC tells PSM2 to send the message synchronously,
meaning that the message is not sent until the receiver acknowledges that it has
matched the send with a receive buffer.

stag
Message Send Tag pointer.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
48 Order No.: H76473-1.0

buf
Source buffer pointer.

len
Length of message starting at buf.

context
Optional user-provided pointer available in psm2_mq_status2_t when the send is
locally completed.

req
PSM2 MQ Request handle created by the non-blocking send, to be used for
explicitly controlling message completion.

Postcondition:

The source buffer is not reusable and the send is not locally complete until its request is
completed by either psm2_mq_test2 or psm2_mq_wait2.

Note: This send function has been implemented to suit MPI_Isend.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The message has been successfully initiated.

4.3.5.9 psm2_mq_iprobe

Syntax:

psm2_error_t psm2_mq_iprobe (psm2_mq_t mq, uint64_t rtag, uint64_t
rtagsel, psm2_mq_status_t *status)

Try to probe if a message is received to match tag selection criteria.

Function to verify if a message matching the supplied tag and tag selectors has been
received. The function is not fully matched until you provide a buffer with the
successfully matching tag selection criteria through psm2_mq_irecv. Probing for
messages may be useful if the size of the message to be received is unknown, in which
case its size is available in the msg_length member of the returned status.

Parameters:

mq
Matched Queue handle.

rtag
Message receive tag.

rtagsel
Message receive tag selector.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 49

Intel® PSM2 Component Functional Documentation

status
Upon return, status is filled with information regarding the matching send.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The iprobe is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE
The iprobe is unsuccessful and status is unchanged.

4.3.5.10 psm2_mq_iprobe2

Syntax:

psm2_error_t psm2_mq_iprobe2(psm2_mq_t mq, psm2_epaddr_t src,
psm2_mq_tag_t *rtag, psm2_mq_tag_t *rtagsel, psm2_mq_status2_t
*status);

Try to probe if a message is received to match tag selection criteria. If src is
PSM2_MQ_ANY_ADDR, messages from all remote processes are used for the matching.

Function to verify if a message matching the supplied tag and tag selectors has been
received. The function is not fully matched until you provide a buffer with the
successfully matching tag selection criteria through psm2_mq_irecv2. Probing for
messages may be useful if the size of the message to be received is unknown, in which
case its size is available in the msg_length member of the returned status.

Parameters:

mq
Matched Queue handle.

src
Source EP address.

rtag
Message receive tag pointer.

rtagsel
Message receive tag selector pointer.

status
Upon return, status is filled with information regarding the matching send.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The iprobe2 is successful and status is updated if non-NULL.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
50 Order No.: H76473-1.0

PSM2_MQ_INCOMPLETE
The iprobe2 is unsuccessful and status is unchanged.

4.3.5.11 psm2_mq_improbe

Syntax:

psm2_mq_improbe (psm2_mq_t mq, uint64_t rtag, uint64_t rtagsel,
psm2_mq_req_t *req, psm2_mq_status_t *status)

Probe for a matching message, and if found, remove the message from the MQ; the
message can be retrieved through the req.

Parameters:

mq
Matched Queue handle.

rtag
Message receive tag.

rtagsel
Message receive tag selector.

req
PSM2 MQ Request handle, to be used for receiving the matched message.

status
Upon return, status is filled with information regarding the matching send.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The improbe is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE
The improbe is unsuccessful and status is unchanged.

4.3.5.12 psm2_mq_improbe2

Syntax:

psm2_mq_improbe2 (psm2_mq_t mq, psm2_epaddr_t src, psm2_mq_tag_t
*rtag, psm2_mq_tag_t *rtagsel, psm2_mq_req_t *req,
psm2_mq_status2_t *status)

Probe for a matching message, and if found, remove the message from the MQ; the
message can be retrieved through the req.

Parameters:

mq
Matched Queue handle.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 51

Intel® PSM2 Component Functional Documentation

rtag
Message receive tag pointer.

rtagsel
Message receive tag selector pointer.

req
PSM2 MQ Request handle, to be used for receiving the matched message.

status
Upon return, status is filled with information regarding the matching send.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The improbe2 is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE
The improbe2 is unsuccessful and status is unchanged.

4.3.5.13 psm2_mq_imrecv

Syntax:

psm2_mq_imrecv(psm2_mq_t mq, uintew_t flags, void *buf, uint32_t
len, void *context, psm2_mq_req_t *req)

psm2_mq_imrecv() retrieves both 64-bit and 96-bit tagged messages through the
req handle returned by the appropriate improbe function.

Parameters:

mq
Matched Queue handle.

flags
Receive flags (None currently supported).

buf
Receive buffer.

len
Receive buffer length.

context
User context pointer, available in psm2_mq_status_t upon completion.

req
PSM2 MQ Request handle created by the preposted receive, to be used for explicitly
controlling message receive completion.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
52 Order No.: H76473-1.0

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

PSM2_OK
The function is successful and status is updated if non-NULL.

PSM2_MQ_INCOMPLETE
The function is unsuccessful and status is unchanged.

4.3.5.14 psm2_mq_ipeek

Syntax:

psm2_error_t psm2_mq_ipeek (psm2_mq_t mq, psm2_mq_req_t *req,
psm2_mq_status_t *status)

Query for non-blocking requests ready for completion.

Function to query a particular MQ for non-blocking requests that are ready for
completion. Requests "ready for completion" are not actually considered complete by
MQ until they are returned to the MQ library through psm2_mq_wait or
psm2_mq_test.

If you can deal with consuming request completions in the order in which they
complete, this function can be used both for completions and for ensuring progress.
The latter requirement is satisfied when you peek an empty completion queue as a side
effect of always aggressively peeking and completing all of an MQ's requests ready for
completion.

Parameters:

mq
Matched Queue handle.

req
MQ non-blocking request.

status
Optional MQ status, can be NULL.

Postcondition:

You have ensured progress if the function returns PSM2_MQ_INCOMPLETE.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The peek is successful and req is updated with a request ready for completion. If
status is non-NULL, it is also updated.

PSM2_MQ_INCOMPLETE
The peek is not successful, meaning that there are no further requests ready for
completion. The contents of req and status remain unchanged.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 53

Intel® PSM2 Component Functional Documentation

Example:

// Example that uses psm2_mq_ipeek to make progress instead of psm2_poll
// We return the amount of non-blocking requests that we've completed
int main_progress_loop(psm2_mq_t mq)
{

int num_completed = 0;
psm2_mq_req_t req;
psm2_mq_status_t status;
psm2_error_t err;
my_request_t *myreq;

do {
err = psm2_mq_ipeek(mq, &req,

NULL); // No need for status in ipeek here
if (err == PSM2_MQ_INCOMPLETE)

return num_completed;
else if (err != PSM2_OK)

goto errh;
num_completed++;

// We obtained 'req' at the head of the completion queue.
// We can now free the request with PSM2 and obtain our
// original request from the status' context
err = psm2_mq_test(&req, // is marked as invalid

&status); // we need the status
myreq = (my_request_t *) status.context;

// handle the completion for myreq whether myreq is a
// posted receive or a non-blocking send.

}
while (1);

}

4.3.5.15 psm2_mq_ipeek2

Syntax:

psm2_error_t psm2_mq_ipeek2 (psm2_mq_t mq, psm2_mq_req_t *req,
psm2_mq_status2_t *status)

Query for non-blocking requests ready for completion.

Function to query a particular MQ for non-blocking requests that are ready for
completion. Requests "ready for completion" are not actually considered complete by
MQ until they are returned to the MQ library through psm2_mq_wait2 or
psm2_mq_test2.

If you can deal with consuming request completions in the order in which they
complete, this function can be used both for completions and for ensuring progress.
The latter requirement is satisfied when you peek an empty completion queue as a side
effect of always aggressively peeking and completing all of an MQ's requests ready for
completion.

Parameters:

mq
Matched Queue handle.

req
MQ non-blocking request.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
54 Order No.: H76473-1.0

status
Optional MQ status, can be NULL.

Postcondition:

You have ensured progress if the function returns PSM2_MQ_INCOMPLETE.

The following error codes are returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The peek is successful and req is updated with a request ready for completion. If
status is non-NULL, it is also updated.

PSM2_MQ_INCOMPLETE
The peek is not successful, meaning that there are no further requests ready for
completion. The contents of req and status remain unchanged.

4.3.5.16 psm2_mq_wait

Syntax:

psm2_error_t psm2_mq_wait (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Wait until a non-blocking request completes. Function to wait on requests created from
either preposted receive buffers or non-blocking sends. This is the only blocking
function in the MQ interface and it polls until the request is complete as per the
progress semantics explained in Section 3.1.4, “MQ Progress Requirements” on
page 17.

Parameters:

request
MQ non-blocking request.

status
Updated if non-NULL when request successfully completes.

Precondition:

You have obtained a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv
and you pass a pointer to enough storage to write the output of a psm2_mq_status_t
or NULL if status is to be ignored.

Since MQ internally ensures progress, you need not ensure that progress is made prior
to calling this function.

Postcondition:

The request is assigned the value PSM2_MQ_REQINVALID and all associated MQ
request storage is released back to the MQ library.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 55

Intel® PSM2 Component Functional Documentation

Remarks:

This function ensures progress on the endpoint as long as the request is incomplete.
The status can be NULL, in which case no status is written upon completion. If
request is PSM2_MQ_REQINVALID, the function returns immediately.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Return values:

PSM2_OK
The request is complete or the value of request was PSM2_MQ_REQINVALID.

4.3.5.17 psm2_mq_wait2

Syntax:

psm2_error_t psm2_mq_wait2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Wait until a non-blocking request completes. Function to wait on requests created from
either preposted receive buffers or non-blocking sends. This is the only blocking
function in the MQ interface and it polls until the request is complete as per the
progress semantics explained in Section 3.1.4, “MQ Progress Requirements” on
page 17.

Parameters:

request
MQ non-blocking request.

status
Updated if non-NULL when request successfully completes.

Precondition:

You have obtained a valid MQ request by calling psm2_mq_isend2 or
psm2_mq_irecv2 and you pass a pointer to enough storage to write the output of a
psm2_mq_status2_t or NULL if status is to be ignored.

Since MQ internally ensures progress, you need not ensure that progress is made prior
to calling this function.

Postcondition:

The request is assigned the value PSM2_MQ_REQINVALID and all associated MQ
request storage is released back to the MQ library.

Remarks:

This function ensures progress on the endpoint as long as the request is incomplete.
The status can be NULL, in which case no status is written upon completion. If
request is PSM2_MQ_REQINVALID, the function returns immediately.

The following error code is returned. Other errors are handled by the PSM2 error
handler (psm2_error_register_handler).

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
56 Order No.: H76473-1.0

Return values:

PSM2_OK
The request is complete or the value of request was PSM2_MQ_REQINVALID.

4.3.5.18 psm2_mq_test

Syntax:

psm2_error_t psm2_mq_test (psm2_mq_req_t *request,
psm2_mq_status_t *status)

Test if a non-blocking request is complete. Function to test requests created from either
preposted receive buffers or non-blocking sends for completion. Unlike
psm2_mq_wait, this function tests requests for completion and never ensures
progress directly or indirectly. If you choose to exclusively test requests for completion,
you must ensure progress, using functions described in Section 3.1.4, “MQ Progress
Requirements” on page 17.

It can be useful to construct higher-level completion tests over arrays to test some, all,
or any request that has completed. If you are testing arrays of requests for completion,
Intel recommends that you only ensure progress once, for better performance.

Parameters:

request
MQ non-blocking request.

status
Updated if non-NULL and the request successfully completes.

Precondition:

You obtain a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv and
pass a pointer to enough storage to write the output of a psm2_mq_status_t or NULL
if status is to be ignored.

You must ensure progress on the Matched Queue if psm2_mq_test is exclusively used
for guaranteeing request completions.

Postcondition:

If the request is complete, the request is assigned the value PSM2_MQ_REQINVALID
and all associated MQ request storage is released back to the MQ library. If the request
is incomplete, the contents of request are unchanged.

You must ensure progress on the Matched Queue if psm2_mq_test is exclusively used
for guaranteeing request completions.

The following two errors are always returned. Other errors are handled by the PSM2
error handler (psm2_error_register_handler).

Return values:

PSM2_OK
The request is complete or the value of request was PSM2_MQ_REQINVALID.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 57

Intel® PSM2 Component Functional Documentation

PSM2_MQ_INCOMPLETE
The request is not complete and request is unchanged.

Example:

// Function that returns the first completed request in an array

// of requests.

void * user_testany(psm2_mq_t mq, psm2_mq_req_t *allreqs, int nreqs)

{

int i;

void *context = NULL;

// Ensure progress only once

psm2_poll(mq);

// Test for at least one completion and return its context

psm2_mq_status_t stat;

for (i = 0; i < nreqs; i++) {

if (psm2_mq_test(&allreqs[i], &stat) == PSM2_OK) {

context = stat.context;

break;

}

}

return context;

}

4.3.5.19 psm2_mq_test2

Syntax:

psm2_error_t psm2_mq_test2 (psm2_mq_req_t *request,
psm2_mq_status2_t *status)

Test if a non-blocking request is complete. Function to test requests created from either
preposted receive buffers or non-blocking sends for completion. Unlike
psm2_mq_wait2, this function tests request for completion and never ensures
progress directly or indirectly. If you choose to exclusively test requests for completion,
you must ensure progress, using functions described in Section 3.1.4, “MQ Progress
Requirements” on page 17.

It can be useful to construct higher-level completion tests over arrays to test some, all,
or any request that has completed. If you are testing arrays of requests for completion,
Intel recommends that you only ensure progress once, for better performance.

Parameters:

request
MQ non-blocking request.

status
Updated if non-NULL and the request successfully completes.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
58 Order No.: H76473-1.0

Precondition:

You obtain a valid MQ request by calling psm2_mq_isend2 or psm2_mq_irecv2 and
pass a pointer to enough storage to write the output of a psm2_mq_status2_t or
NULL if status is to be ignored.

You must ensure progress on the Matched Queue if psm2_mq_test2 is exclusively
used for guaranteeing request completions.

Postcondition:

If the request is complete, the request is assigned the value PSM2_MQ_REQINVALID
and all associated MQ request storage is released back to the MQ library. If the request
is incomplete, the contents of request are unchanged.

You must ensure progress on the Matched Queue if psm2_mq_test2 is exclusively
used for guaranteeing request completions.

The following two errors are always returned. Other errors are handled by the PSM2
error handler (psm2_error_register_handler).

Return values:

PSM2_OK
The request is complete or the value of request was PSM2_MQ_REQINVALID.

PSM2_MQ_INCOMPLETE
The request is not complete and request is unchanged.

4.3.5.20 psm2_mq_cancel

Syntax:

psm2_error_t psm2_mq_cancel (psm2_mq_req_t *req)

Cancel a preposted request. Function to cancel a preposted receive request returned by
psm2_mq_irecv.

It is currently illegal to cancel a send request initiated with psm2_mq_isend.

Precondition:

You have obtained a valid MQ request by calling psm2_mq_isend or psm2_mq_irecv
and you pass a pointer to enough storage to write the output of a psm2_mq_status_t
or NULL if status is to be ignored.

Postcondition:

Whether the cancel is successful or not, you return the request to the library using
psm2_mq_test or psm2_mq_wait.

Only the two following errors can be returned directly, without being handled by the
error handler (psm2_error_register_handler):

Return values:

PSM2_OK
The request could be successfully cancelled such that the preposted receive buffer
could be removed from the preposted receive queue before a match occurred. The

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 59

Intel® PSM2 Component Functional Documentation

associated request remains unchanged and you must still return the storage to the
MQ library.

PSM2_MQ_INCOMPLETE
The request could not be successfully cancelled since the preposted receive buffer
has already matched an incoming message. The request remains unchanged.

4.3.5.21 psm2_mq_get_stats

Syntax:

psm2_mq_get_stats (psm2_mq_t mq, psm2_mq_stats_t *stats)

Retrieve statistics from an instantiated MQ.

Parameters:

mq
Matched Queue handle.

stats
MQ Stats handle.

4.4 PSM2 Matched Queue Options
MQ options can be modified at any point at runtime, unless otherwise noted. The
following example shows how to retrieve the current message size at which messages
are sent as synchronous.

uint32_t get_hfirv_size(psm2_mq_t mq)

{

uint32_t rvsize;

psm2_getopt(mq, PSM2_MQ_RNDV_HFI_SZ, &rvsize);

return rvsize;

}

4.4.1 Defines

Table 12. Matched Queue Options Defines

Define Description

#define PSM2_MQ_RNDV_HFI_SZ

[uint32_t] Size at which to start enabling rendezvous
messaging for Intel® Omni-Path messages . If unset, defaults
to values between 56000 and 72000 depending on the system
configuration.

#define PSM2_MQ_RNDV_SHM_SZ
[uint32_t] Size at which to start enabling rendezvous
messaging for shared memory (intra-node) messages. If
unset, defaults to 64000 bytes.

#define PSM2_MQ_MAX_SYSBUF_MBYTES
[uint32_t] Maximum amount of bytes to allocate for
unexpected messages. Messages that would cause memory
allocation to exceed this amount are dropped.

Intel® PSM2 Component Functional Documentation

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
60 Order No.: H76473-1.0

4.4.2 Functions

4.4.2.1 psm2_mq_getopt

Syntax:

psm2_error_t psm2_mq_getopt (psm2_mq_t mq, int option, void
*value)

Get an MQ option. Function to retrieve the value of an MQ option.

Parameters:

mq
Matched Queue handle.

option
Index of option to retrieve. Possible values are:
PSM2_MQ_RNDV_HFI_SZ
PSM2_MQ_RNDV_SHM_SZ
PSM2_MQ_MAX_SYSBUF_MBYTES

value
Pointer to storage that can be used to store the value of the option to be set. You
must ensure that the pointer points to a memory location large enough to
accommodate the value associated to the type. Each option documents the size
associated to its value.

Returns:

PSM2_OK
If option could be retrieved.

PSM2_PARAM_ERR
If the option is not a valid option number.

4.4.2.2 psm2_mq_setopt

Syntax:

psm2_error_t psm2_mq_setopt (psm2_mq_t mq, int option, const void
*value)

Set an MQ option. Function to set the value of an MQ option.

Table 13. Matched Queue Options Functions

Function Description

psm2_mq_getopt (psm2_mq_t mq, int option,
void *value)

Get an MQ option.
For details, see: Section 4.4.2.1.

psm2_mq_setopt (psm2_mq_t mq, int option,
const void *value)

Set an MQ option.
For details, see: Section 4.4.2.2.

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 61

Intel® PSM2 Component Functional Documentation

Parameters:

mq
Matched Queue handle.

option
Index of option to retrieve. Possible values are:
PSM2_MQ_RNDV_HFI_SZ
PSM2_MQ_RNDV_SHM_SZ
PSM2_MQ_MAX_SYSBUF_MBYTES

value
Pointer to storage that contains the value to be updated for the supplied option
number. You must ensure that the pointer points to a memory location with a
correct size.

Returns:

PSM2_OK
If option could be retrieved.

PSM2_PARAM_ERR
If the option is not a valid option number.

PSM2_OPT_READONLY
If the option to be set is a read-only option (currently no MQ options are read-
only).

Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
62 Order No.: H76473-1.0

5.0 Intel® PSM2 Sample Program

This section describes a sample program that can be used to verify basic PSM2
functionality, similar to Hello World code.

5.1 Prerequisites
To run the sample program, you need a built copy of PSM2 in your local directory.

5.2 Setting Up the Program
1. Start two instances of this program from the same working directory. These

processes can execute on the same host, or on two hosts connected with Intel®
Omni-Path Architecture (Intel® OPA).

2. Compile using this command:
gcc psm2-demo.c -o psm2-demo -lpsm2

3. Run one instance as a server process using the command:
./psm2-demo -s

4. Run the other instance as a client process using the command:
./psm2-demo

5.3 Sample Code
/*
 PSM2 example program.
 Start two instances of this program from the same working directory.
 These processes can execute on the same host, or on two hosts connected
 with OPA.

 Compile with: gcc psm2-demo.c -o psm2-demo -lpsm2
 Run as: ./psm2-demo -s # this is the server process
 and: ./psm2-demo # this is the client process

 Copyright(c) 2015 Intel Corporation.
*/
#include <stdio.h>
#include <psm2.h> /* required for core PSM2 functions */
#include <psm2_mq.h> /* required for PSM2 MQ functions (send, recv, etc) */
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

#define BUFFER_LENGTH 80
#define CONNECT_ARRAY_SIZE 8

void die(char *msg, int rc){
fprintf(stderr, "%s: %d\n", msg, rc);

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 63

Intel® PSM2 Sample Program

exit(1);
}

/* Helper functions to find the server's PSM2 endpoint identifier (epid). */
psm2_epid_t find_server(){

FILE *fp = NULL;
psm2_epid_tserver_epid = 0;

printf("PSM2 client waiting for epid mapping file to appear...\n");
while (!fp){

sleep(1);
fp = fopen("psm2-demo-server-epid", "r");

}
fscanf(fp, "%lx", &server_epid);
fclose(fp);
printf("PSM2 client found server epid = 0x%lx\n", server_epid);
return server_epid;

}

void write_epid_to_file(psm2_epid_t myepid) {
FILE *fp;

fp = fopen("psm2-demo-server-epid", "w");
if (!fp){

fprintf(stderr,
"Exiting, couldn't write server's epid mapping file: ");

die(strerror(errno), errno);
}
fprintf(fp, "0x%lx", myepid);
fclose(fp);
printf("PSM2 server wrote epid = 0x%lx to file.\n", myepid);
return;

}

int main(int argc, char **argv){
struct psm2_ep_open_opts o;
psm2_uuid_tuuid;
psm2_ep_t myep;
psm2_epid_tmyepid;
psm2_epid_tserver_epid;
psm2_epid_tepid_array[CONNECT_ARRAY_SIZE];
int epid_array_mask[CONNECT_ARRAY_SIZE];
psm2_error_t epid_connect_errors[CONNECT_ARRAY_SIZE];
psm2_epaddr_t epaddr_array[CONNECT_ARRAY_SIZE];

int rc;
int ver_major = PSM2_VERNO_MAJOR;
int ver_minor = PSM2_VERNO_MINOR;
char msgbuf[BUFFER_LENGTH];
psm2_mq_t q;
psm2_mq_req_t req_mq;
int is_server = 0;

if (argc > 2){
die("To run in server mode, invoke as ./psm2-demo -s\n" \
 "or run in client mode, invoke as ./psm2-demo\n" \
 "Wrong number of args", argc);

}

is_server = argc - 1; /* Assume any command line argument is -s */

memset(uuid, 0, sizeof(psm2_uuid_t)); /* Use a UUID of zero */

/* Try to initialize PSM2 with the requested library version.
 * In this example, given the use of the PSM2_VERNO_MAJOR and MINOR
 * as defined in the PSM2 headers, ensure that we are linking with
 * the same version of PSM2 as we compiled against. */

Intel® PSM2 Sample Program

Intel® Performance Scaled Messaging 2 (PSM2)
Programmer’s Guide November 2015
64 Order No.: H76473-1.0

if ((rc = psm2_init(&ver_major, &ver_minor)) != PSM2_OK){
die("couldn't init", rc);

}
printf("PSM2 init done.\n");

/* Setup the endpoint options struct */
if ((rc = psm2_ep_open_opts_get_defaults(&o)) != PSM2_OK){

die("couldn't set default opts", rc);
}
printf("PSM2 opts_get_defaults done.\n");

/* Attempt to open a PSM2 endpoint. This allocates hardware resources. */
if ((rc = psm2_ep_open(uuid, &o, &myep, &myepid)) != PSM2_OK){

die("couldn't psm2_ep_open()", rc);
}
printf("PSM2 endpoint open done.\n");

if (is_server){
write_epid_to_file(myepid);

} else {
server_epid = find_server();

}

if (is_server){
/* Server does nothing here. A connection does not have to be
 * established to receive messages. */
printf("PSM2 server up.\n");

} else {
/* Setup connection request info */
/* PSM2 can connect to a single epid per request,
 * or an arbitrary number of epids in a single connect call.
 * For this example, use part of an array of
 * connection requests. */
memset(epid_array_mask, 0, sizeof(int) * CONNECT_ARRAY_SIZE);
epid_array[0] = server_epid;
epid_array_mask[0] = 1;

/* Begin the connection process.
 * note that if a requested epid is not responding,
 * the connect call will still return OK.
 * The errors array will contain the state of individual
 * connection requests. */
if ((rc = psm2_ep_connect(myep,

 CONNECT_ARRAY_SIZE,
 epid_array,
 epid_array_mask,
 epid_connect_errors,
 epaddr_array,
 0 /* no timeout */

)) != PSM2_OK){
die("couldn't ep_connect", rc);

}
printf("PSM2 connect request processed.\n");

/* Now check if our connection to the server is ready */
if (epid_connect_errors[0] != PSM2_OK){

die("couldn't connect to server",
 epid_connect_errors[0]);

}
printf("PSM2 client-server connection established.\n");

}

/* Setup our PSM2 message queue */
if ((rc = psm2_mq_init(myep, PSM2_MQ_ORDERMASK_NONE, NULL, 0, &q))
 != PSM2_OK){

die("couldn't initialize PSM2 MQ", rc);

Intel® Performance Scaled Messaging 2 (PSM2)
November 2015 Programmer’s Guide
Order No.: H76473-1.0 65

Intel® PSM2 Sample Program

}
printf("PSM2 MQ init done.\n");

if (is_server){
/* Post the receive request */
if ((rc = psm2_mq_irecv(q,

 0xABCD, /* message tag */
 (uint64_t)-1, /* message tag mask */
 0, /* no flags */
 msgbuf, BUFFER_LENGTH,
 NULL, /* no context to add */
 &req_mq /* track irecv status */

)) != PSM2_OK){
die("couldn't post psm2_mq_irecv()", rc);

}
printf("PSM2 MQ irecv() posted\n");

/* Wait until the message arrives */
if ((rc = psm2_mq_wait(&req_mq, NULL)) != PSM2_OK){

die("couldn't wait for the irecv", rc);
}
printf("PSM2 MQ wait() done.\n");
printf("Message from client:\n");
printf("%s", msgbuf);

unlink("psm2-demo-server-epid");
} else {

/* Say hello */
snprintf(msgbuf, BUFFER_LENGTH,

 "Hello world from epid=0x%lx, pid=%d.\n",
 myepid, getpid());

if ((rc = psm2_mq_send(q,
 epaddr_array[0], /* destination epaddr */
 0, /* no flags */
 0xABCD, /* tag */
 msgbuf, BUFFER_LENGTH

)) != PSM2_OK){
die("couldn't post psm2_mq_isend", rc);

}
printf("PSM2 MQ send() done.\n");

}

/* Close down the MQ */
if ((rc = psm2_mq_finalize(q)) != PSM2_OK){

die("couldn't psm2_mq_finalize()", rc);
}
printf("PSM2 MQ finalized.\n");

/* Close our ep, releasing all hardware resources.
 * Try to close all connections properly */
if ((rc = psm2_ep_close(myep, PSM2_EP_CLOSE_GRACEFUL,

 0 /* no timeout */)) != PSM2_OK){
die("couldn't psm2_ep_close()", rc);

}
printf("PSM2 ep closed.\n");

/* Release all local PSM2 resources */
if ((rc = psm2_finalize()) != PSM2_OK){

die("couldn't psm2_finalize()", rc);
}
printf("PSM2 shut down, exiting.\n");

return 0;
}

	Intel® Performance Scaled Messaging 2 (PSM2)
	Contents
	Figures
	Tables
	Revision History

	1.0 Introduction
	1.1 Documentation Conventions
	1.2 License Agreements

	2.0 Intel® PSM2 Messaging API
	2.1 Compatibility
	2.2 Endpoint Communication Model
	2.3 PSM2 Components
	2.4 PSM2 Communication Progress Guarantees
	2.5 PSM2 Completion Semantics
	2.6 PSM2 Error Handling
	2.7 Environment Variables
	2.7.1 PSM2_DEVICES
	2.7.2 PSM2_MEMORY
	2.7.3 PSM2_MQ_SENDREQS_MAX
	2.7.4 PSM2_MQ_RECVREQS_MAX
	2.7.5 PSM2_MQ_RNDV_HFI_THRESH
	2.7.6 PSM2_MQ_RNDV_SHM_THRESH
	2.7.7 PSM2_RANKS_PER_CONTEXT
	2.7.8 PSM2_RCVTHREAD
	2.7.9 PSM2_SHAREDCONTEXTS
	2.7.10 PSM2_SHAREDCONTEXTS_MAX
	2.7.11 PSM2_TID
	2.7.12 PSM2_TRACEMASK

	2.8 HFI Environment Variables
	2.8.1 HFI_DISABLE_MMAP_MALLOC
	2.8.2 HFI_NO_CPUAFFINITY
	2.8.3 HFI_UNIT

	3.0 Intel® PSM2 Component Documentation
	3.1 Matched Queues Interface
	3.1.1 MQ Tag Matching
	3.1.2 MQ Message Reception
	3.1.3 MQ Completion Semantics
	3.1.4 MQ Progress Requirements

	4.0 Intel® PSM2 Component Functional Documentation
	4.1 PSM2 Initialization and Maintenance
	4.1.1 Data Structures
	4.1.2 Defines
	4.1.3 Typedefs
	4.1.4 Enumerations
	4.1.5 Functions
	4.1.5.1 psm2_init
	4.1.5.2 psm2_finalize
	4.1.5.3 psm2_error_register_handler
	4.1.5.4 psm2_error_defer
	4.1.5.5 psm2_error_get_string

	4.2 PSM2 Device Endpoint Management
	4.2.1 Data Structures
	4.2.2 Defines
	4.2.3 Typedefs
	4.2.4 Functions
	4.2.4.1 psm2_map_nid_hostname
	4.2.4.2 psm2_ep_num_devunits
	4.2.4.3 psm2_uuid_generate
	4.2.4.4 psm2_ep_open_opts_get_defaults
	4.2.4.5 psm2_ep_open
	4.2.4.6 psm2_ep_epid_share_memory
	4.2.4.7 psm2_ep_close
	4.2.4.8 psm2_ep_connect
	4.2.4.9 psm2_ep_disconnect
	4.2.4.10 psm2_poll
	4.2.4.11 psm2_epaddr_setlabel

	4.3 PSM2 Matched Queues
	4.3.1 Modules
	4.3.2 Data Structures
	4.3.2.1 psm2_mq_status
	4.3.2.2 MQ Statistics Structure
	4.3.2.3 psm2_tag_t
	4.3.2.4 psm2_mq_status2

	4.3.3 Defines
	4.3.4 Typedefs
	4.3.5 Functions
	4.3.5.1 psm2_mq_init
	4.3.5.2 psm2_mq_finalize
	4.3.5.3 psm2_mq_irecv
	4.3.5.4 psm2_mq_irecv2
	4.3.5.5 psm2_mq_send
	4.3.5.6 psm2_mq_send2
	4.3.5.7 psm2_mq_isend
	4.3.5.8 psm2_mq_isend2
	4.3.5.9 psm2_mq_iprobe
	4.3.5.10 psm2_mq_iprobe2
	4.3.5.11 psm2_mq_improbe
	4.3.5.12 psm2_mq_improbe2
	4.3.5.13 psm2_mq_imrecv
	4.3.5.14 psm2_mq_ipeek
	4.3.5.15 psm2_mq_ipeek2
	4.3.5.16 psm2_mq_wait
	4.3.5.17 psm2_mq_wait2
	4.3.5.18 psm2_mq_test
	4.3.5.19 psm2_mq_test2
	4.3.5.20 psm2_mq_cancel
	4.3.5.21 psm2_mq_get_stats

	4.4 PSM2 Matched Queue Options
	4.4.1 Defines
	4.4.2 Functions
	4.4.2.1 psm2_mq_getopt
	4.4.2.2 psm2_mq_setopt

	5.0 Intel® PSM2 Sample Program
	5.1 Prerequisites
	5.2 Setting Up the Program
	5.3 Sample Code

